1
|
Xie F, Zhang S, Yang M, He J, Li S, Zhang Y. Frustrated Lewis Pair-Promoted Organocatalytic Transformation of Hydrosilanes into Silanols with Water Oxidant. J Am Chem Soc 2024; 146:29373-29382. [PMID: 39412826 DOI: 10.1021/jacs.4c07818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Owing to their unique properties, the silanols have attracted intense attention but remain challenging to prepare from the organocatalytic oxidation of hydrosilanes using H2O as a green oxidant. Herein, we employ a frustrated Lewis pair (FLP) to successfully suppress the formation of undesired siloxanes and produce silanols in high to excellent yields in the presence of H2O. Mechanistic studies suggest that the reaction is initiated with the activation of FLP by H2O rather than by silanes and goes through a concerted SN2 mechanism. More importantly, the combination of the FLP-catalyzed oxidation of hydrosilanes with B(C6F5)3-catalyzed dehydrogenation enables us to realize the precise synthesis of sequence-controlled oligosiloxanes. This method exhibits a broad substrate scope and can be easily scaled up, thus exhibiting promising application potentials in the precision synthesis of silicon-containing polymer materials.
Collapse
Affiliation(s)
- Fuyu Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Sutao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Mo Yang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Shuhua Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Institute of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
2
|
Li C, Zhao W, He J, Zhang Y. Topology Controlled All-(Meth)acrylic Thermoplastic Elastomers by Multi-Functional Lewis Pairs-Mediated Polymerization. Angew Chem Int Ed Engl 2024; 63:e202401265. [PMID: 38390752 DOI: 10.1002/anie.202401265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/22/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
It remains challenging to synthesize all-(meth)acrylic triblock thermoplastic elastomers (TPEs), due to the drastically different reactivities between the acrylates and methacrylates and inevitable occurrence of side reactions during polymerization of acrylates. By taking advantage of the easy structural modulation features of N-heterocyclic olefins (NHOs), we design and synthesize strong nucleophilic tetraphenylethylene-based NHOs varying in the number (i.e. mono-, dual- and tetra-) of initiating functional groups. Its combination with bulky organoaluminum [iBuAl(BHT)2] (BHT=bis(2,6-di-tBu-4-methylphenoxy)) constructs Lewis pair (LP) to realize the living polymerization of both acrylates and methacrylates, furnishing polyacrylates with ultrahigh molecular weight (Mn up to 2174 kg ⋅ mol-1) within 4 min. Moreover, these NHO-based LPs enable us to not only realize the control over the polymers' topology (i.e. linear and star), but also achieve triblock star copolymers in one-step manner. Mechanical studies reveal that the star triblock TPEs exhibit better mechanical properties (elongation at break up to 1863 % and tensile strength up to 19.1 MPa) in comparison with the linear analogs. Moreover, the presence of tetraphenylethylene group in the NHOs entitled the triblock TPEs with excellent AIE properties in both solution and solid state.
Collapse
Affiliation(s)
- Chengkai Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, China, 130012
- SINOPEC Beijing Research Institute of Chemical Industry, Beijing, China, 100013
| | - Wuchao Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, China, 130012
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, China, 130012
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, China, 130012
| |
Collapse
|
3
|
Zhang YY, Yang GW, Lu C, Zhu XF, Wang Y, Wu GP. Organoboron-mediated polymerizations. Chem Soc Rev 2024; 53:3384-3456. [PMID: 38411207 DOI: 10.1039/d3cs00115f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The scientific community has witnessed extensive developments and applications of organoboron compounds as synthetic elements and metal-free catalysts for the construction of small molecules, macromolecules, and functional materials over the last two decades. This review highlights the achievements of organoboron-mediated polymerizations in the past several decades alongside the mechanisms underlying these transformations from the standpoint of the polymerization mode. Emphasis is placed on free radical polymerization, Lewis pair polymerization, ionic (cationic and anionic) polymerization, and polyhomologation. Herein, alkylborane/O2 initiating systems mediate the radical polymerization under ambient conditions in a controlled/living manner by careful optimization of the alkylborane structure or additives; when combined with Lewis bases, the selected organoboron compounds can mediate the Lewis pair polymerization of polar monomers; the bicomponent organoboron-based Lewis pairs and bifunctional organoboron-onium catalysts catalyze ring opening (co)polymerization of cyclic monomers (with heteroallenes, such as epoxides, CO2, CO, COS, CS2, episulfides, anhydrides, and isocyanates) with well-defined structures and high reactivities; and organoboranes initiate the polyhomologation of sulfur ylides and arsonium ylides providing functional polyethylene with different topologies. The topological structures of the produced polymers via these organoboron-mediated polymerizations are also presented in this review mainly including linear polymers, block copolymers, cyclic polymers, and graft polymers. We hope the summary and understanding of how organoboron compounds mediate polymerizations can inspire chemists to apply these principles in the design of more advanced organoboron compounds, which may be beneficial for the polymer chemistry community and organometallics/organocatalysis community.
Collapse
Affiliation(s)
- Yao-Yao Zhang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
- National Engineering Laboratory for Textile Fiber Materials and Processing Technology, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, Zhejiang, China
| | - Guan-Wen Yang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Chenjie Lu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China
| | - Xiao-Feng Zhu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Yuhui Wang
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| | - Guang-Peng Wu
- MOE Laboratory of Macromolecular Synthesis and Functionalization, Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
4
|
Xu L, Takagi Y, Fu X, Wang Y, Narumi A, Sato SI, Shen X, Kakuchi T. Hydrosilylation-Promoted Group Transfer Polymerization of Ethyl Sorbate: A Controlled/Living System Applied to the Synthesis of an α-End Functionalized Polymer and a Triblock Copolymer with a (Meth)acrylate Polymer. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c02543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
5
|
Wan Y, He J, Zhang Y. An Arbitrarily Regulated Monomer Sequence in Multi-Block Copolymer Synthesis by Frustrated Lewis Pairs. Angew Chem Int Ed Engl 2023; 62:e202218248. [PMID: 36577704 DOI: 10.1002/anie.202218248] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
Rapid access to sequence-controlled multi-block copolymers (multi-BCPs) remains as a challenging task in the polymer synthesis. Here we employ a Lewis pair (LP) composed of organophosphorus superbase and bulky organoaluminum to effectively copolymerize the mixture of methacrylate, cyclic acrylate, and two acrylates, into well-defined di-, tri-, tetra- and even a hepta-BCP in one-pot one-step manner. The combined livingness, dual-initiation and CSC feature of Lewis pair polymerization enable us to achieve not only a trihexaconta-BCP with the highest record in 8 steps by using four-component monomer mixture as building blocks, but also the arbitrarily-regulated monomer sequence in multi-BCP, simply by changing the composition and adding order of the monomer mixtures, thus demonstrating the powerful capability of our strategy in improving the efficiency and enriching the composition of multi-BCP synthesis.
Collapse
Affiliation(s)
- Yi Wan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, 130012, Changchun, Jilin, China
| |
Collapse
|
6
|
Lei Y, Chen Y. Post-polymerization modification of poly(ethyl sorbate) leading to various alternating copolymers. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Li C, Zhao W, He J, Zhang Y, Zhang W. Single‐Step Expeditious Synthesis of Diblock Copolymers with Different Morphologies by Lewis Pair Polymerization‐Induced Self‐Assembly. Angew Chem Int Ed Engl 2022; 61:e202202448. [DOI: 10.1002/anie.202202448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Chengkai Li
- State Key Laboratory of Supramolecular Structure and Materials. College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Wuchao Zhao
- State Key Laboratory of Supramolecular Structure and Materials. College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials. College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials. College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
8
|
Liu Y, Lei Y, Chen Y. Thermoresponsive Properties of Poly[oligo(ethylene glycol) sorbate]s Prepared by Organocatalyzed Group Transfer Polymerization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yujian Liu
- Institute for Advanced Study, Shenzhen University, Nanshan District Shenzhen, Guangdong 518060, China
| | - Yongyao Lei
- Institute for Advanced Study, Shenzhen University, Nanshan District Shenzhen, Guangdong 518060, China
| | - Yougen Chen
- Institute for Advanced Study, Shenzhen University, Nanshan District Shenzhen, Guangdong 518060, China
| |
Collapse
|
9
|
Li C, Zhao W, He J, Zhang Y, Zhang W. Single‐Step Expeditious Synthesis of Diblock Copolymers with Different Morphologies by Lewis Pair Polymerization‐Induced Self‐Assembly. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Chengkai Li
- State Key Laboratory of Supramolecular Structure and Materials. College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Wuchao Zhao
- State Key Laboratory of Supramolecular Structure and Materials. College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials. College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials. College of Chemistry Jilin University Changchun Jilin 130012 China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education Institute of Polymer Chemistry College of Chemistry Nankai University Tianjin 300071 China
| |
Collapse
|
10
|
Zhang ZH, Wang X, Weng B, Zhang Y, Zhang G, Hong M. Zinc-Mediated Allylation-Lactonization One-Pot Reaction to Methylene Butyrolactones: Renewable Monomers for Sustainable Acrylic Polymers with Closed-Loop Recyclability. ACS POLYMERS AU 2022; 2:266-274. [PMID: 36855566 PMCID: PMC9955236 DOI: 10.1021/acspolymersau.2c00001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Despite biomass-derived methylene butyrolactone monomers having great potential in substituting the petroleum-based methacrylates for synthesizing the sustainable acrylic polymers, the possible industrial production of these cyclic monomers is unfortunately not practical due to moderate overall yields and harsh reaction conditions or a time-consuming multistep process. Here we report a convenient and effective synthetic approach to a series of biomass-derived methylene butyrolactone monomers via a zinc-mediated allylation-lactonization one-pot reaction of biorenewable aldehydes with ethyl 2-(bromomethyl)acrylate. Under simple room-temperature sonication conditions, near-quantitative conversions (>90%) can be accomplished within 5-30 min, providing pure products with high isolated yields of 70-80%. Their efficient polymerizations with a high degree of control and complete chemoselectivity were enabled by the judiciously chosen Lewis pair catalyst based on methylaluminum bis(2,6-di-tert-butyl-4-methylphenoxide) [MeAl(BHT)2] Lewis acid and 3-diisopropyl-4,5-dimethylimidazol-2-ylidene (I i Pr) Lewis base, affording new poly(methylene butyrolactone)s with high thermal stability and thermal properties tuned in a wide range as well as pendant vinyl groups for postfunctionalization. Through the development of an effective depolymerization setup (370-390 °C, ca. 100 mTorr, 1 h, a muffle furnace), thermal depolymerizations of these polymers have been achieved with monomer recovery up to 99.8%, thus successfully constructing sustainable acrylic polymers with closed-loop recyclability.
Collapse
Affiliation(s)
- Zhen-Hua Zhang
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xing Wang
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Biwei Weng
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yixin Zhang
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Guozhu Zhang
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Miao Hong
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, University of Chinese
Academy of Sciences, Chinese Academy of Sciences, Shanghai 200032, China,School
of Chemistry and Material Sciences, Hangzhou Institute for Advanced
Study, University of Chinese Academy of
Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China,
| |
Collapse
|
11
|
Tang J, Li M, Wang X, Tao Y. Switchable Polymerization Organocatalysis: From Monomer Mixtures to Block Copolymers. Angew Chem Int Ed Engl 2022; 61:e202115465. [PMID: 35107197 DOI: 10.1002/anie.202115465] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Indexed: 11/09/2022]
Abstract
One-pot production of sequence-controlled block copolymer from mixed monomers is a crucial but rarely reached goal. Using a switchable Lewis-pair organocatalyst, we have accomplished sequence-selective polymerization from a mixture of O-carboxyanhydride (OCA) and epoxide. Polymerization of the OCA monomer occurs first and exclusively because of its exceedingly high polymerizability. When OCA is fully consumed, alternating copolymerization of epoxide and CO2 liberated in OCA polymerization is triggered from the termini of the first block. The two polymerizations thus occur in tandem, both in chemoselective fashion, so that a sequence-controlled block polymer with up to 99 % CO2 conversion is furnished in this one-pot protocol. Calculations and experimental results demonstrate a chemoselective and cooperative mechanism, where the high polymerizability of the OCA monomers guarantees exquisite sequence selectivity and the cooperative decarboxylation partly arose from the stabilization effect by triethylborane, which facilitates the smooth transformation of the chain end from carbonate to alkoxide.
Collapse
Affiliation(s)
- Jiadong Tang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Maosheng Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, P. R. China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, P. R. China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Renmin Street 5625, Changchun, 130022, P. R. China.,University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
12
|
Zhao W, Wang Q, He J, Zhang Y. Boron-Based Lewis Pairs Catalyzed Living, Regioselective and Topology-Controlled Polymerization of (E, E)-alkyl Sorbates. Macromol Rapid Commun 2022; 43:e2200088. [PMID: 35363417 DOI: 10.1002/marc.202200088] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/16/2022] [Indexed: 11/06/2022]
Abstract
It remains as a great challenge to realize living and controlled polymerization of renewable monomers by the boron-based Lewis pairs. Here we employ strong nucleophilic N-heterocyclic olefins (NHOs) or N-heterocyclic carbenes (NHCs) as Lewis bases (LBs), and boron-based compounds as Lewis acids (LAs) to construct LPs for polymerization of alkyl sorbates, including (E, E)-methyl sorbate (MS) and (E, E)-ethyl sorbate (ES). Systematic investigation reveal that the combinations of B(C6 F5 )3 with appropriate acidity and steric hindrance, and strong nucleophilic NHOs promote living and controlled polymerization of alkyl sorbates in 100% 1,4-addition manner, furnishing polymers with predicted molecular weight (Mw up to 56.6 kg/mol) and narrow molecular weight distribution (Đ as low as 1.12). Furthermore, topology analysis shows that NHC1/B(C6 F5 )3 LP produced PMS possessing cyclic structure. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wuchao Zhao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Qianyi Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin, 130012, China
| |
Collapse
|
13
|
Tang J, Li M, Wang X, Tao Y. Switchable Polymerization Organocatalysis: From Monomer Mixtures to Block Copolymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiadong Tang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| | - Maosheng Li
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 P. R. China
| | - Xianhong Wang
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 P. R. China
| | - Youhua Tao
- Key Laboratory of Polymer Ecomaterials Changchun Institute of Applied Chemistry Chinese Academy of Sciences Renmin Street 5625 Changchun 130022 P. R. China
- University of Science and Technology of China Hefei 230026 P. R. China
| |
Collapse
|
14
|
Guthardt R, Mellin J, Bruhn C, Siemeling U. 1,1′‐Ferrocenylene‐Bridged Bis(N‐Heterocyclic Olefin) Derivatives. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Robin Guthardt
- Institut für Chemie Universität Kassel Heinrich-Plett-Straße 40 34132 Kassel Germany
| | - Johanna Mellin
- Institut für Chemie Universität Kassel Heinrich-Plett-Straße 40 34132 Kassel Germany
| | - Clemens Bruhn
- Institut für Chemie Universität Kassel Heinrich-Plett-Straße 40 34132 Kassel Germany
| | - Ulrich Siemeling
- Institut für Chemie Universität Kassel Heinrich-Plett-Straße 40 34132 Kassel Germany
| |
Collapse
|