1
|
Matsuyama T, Ishida H, Wang C, Miyamoto K, Nakajima M, Toriumi N, Nagashima Y, Uchiyama M. Transition-Metal-Free Thioboration of Terminal Alkynes. JACS AU 2024; 4:4927-4933. [PMID: 39735905 PMCID: PMC11672135 DOI: 10.1021/jacsau.4c00907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/17/2024] [Accepted: 11/01/2024] [Indexed: 12/31/2024]
Abstract
We present a new type of elementoboration reaction, the thioboration of terminal alkynes. This method enables highly controllable regio-/stereo-/chemoselective cis- and trans-thioboration on demand, affording synthetically versatile and densely functionalized vinyl boron/vinyl sulfide derivatives in a straightforward manner without the need for a transition-metal catalyst.
Collapse
Affiliation(s)
- Taro Matsuyama
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Hiroshi Ishida
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Chao Wang
- Faculty
of Pharmaceutical Sciences, Institute of Medicinal, Pharmaceutical,
and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa-shi, Ishikawa 920-1192, Japan
| | - Kazunori Miyamoto
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Faculty
of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo 105-8512, Japan
| | - Masaya Nakajima
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Naoyuki Toriumi
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuki Nagashima
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Masanobu Uchiyama
- Graduate
School of Pharmaceutical Sciences, The University
of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Research
Initiative for Supra-Materials (RISM), Shinshu
University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan
| |
Collapse
|
2
|
Kaplan JA, Won J, Blum SA. Thioarylation of Alkynes to Generate Dihydrothiopheniums through Gold(I)/(III)-Catalyzed Cyclization-Cross-Coupling. J Org Chem 2024; 89:14384-14398. [PMID: 39276336 DOI: 10.1021/acs.joc.4c01777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
A thioarylation method is developed for the synthesis of 2,3-dihydrothiopheniums through an electrophilic-cyclization-cross-coupling mechanism, harnessing the gold(I)/(III) cycle of the recently developed MeDalPhosAuCl catalyst. Single-crystal X-ray crystal structural analysis of the dihydrothiophenium products characterized the antiaddition of the sulfur and Csp2 group to the alkyne and a preference for 5-endo dig cyclization. The dihydrothiophenium products are demonstrated as synthetic building blocks for stereodefined acyclic tetrasubstituted alkenes upon ring-opening reaction with amines. Intramolecular competition experiments show the favorability of Csp3 tether cyclizations over Csp2 tethers, preferentially generating dihydrothiopheniums over thiopheniums. Intermolecular competition experiments of alkyne aryl groups and an intermolecular aryl iodide competition suggest a rate-determining reductive elimination step in the gold(I)/gold(III) catalytic cycle. This rate-determining step is further supported by HRMS analysis of reaction intermediates that identify the catalyst resting state under turnover conditions. Catalyst poisoning experiments provide evidence of substrate inhibition, further consistent with these conclusions.
Collapse
Affiliation(s)
- Joseph A Kaplan
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Jonghyun Won
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Suzanne A Blum
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
3
|
Martínez-Núñez C, Velasco N, Sanz R, Suárez-Pantiga S. Synthesis of highly substituted 1,3-dienes through halonium promoted 1,2-sulfur migration of propargylic thioethers. Chem Commun (Camb) 2024; 60:1794-1797. [PMID: 38258886 DOI: 10.1039/d3cc06194a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Conjugated 1-bromo or 1-iodo-1,3-dienes bearing a sulfide substituent have been synthesized via 1,2-sulfur migration from propargylic thioethers upon activation with NIS or NBS. The reaction generally proceeds with high control over the regio- and diastereoselectivity. Highly substituted thiophenes and selenophenes are easily obtained from the generated dienes.
Collapse
Affiliation(s)
- Clara Martínez-Núñez
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001-Burgos, Spain.
| | - Noelia Velasco
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001-Burgos, Spain.
| | - Roberto Sanz
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001-Burgos, Spain.
| | - Samuel Suárez-Pantiga
- Departamento de Química, Facultad de Ciencias, Universidad de Burgos, Pza. Misael Bañuelos s/n, 09001-Burgos, Spain.
| |
Collapse
|
4
|
Stang M, Mycka RJ, Blum SA. Mechanistic Insight from Lewis-Acid-Dependent Selectivity and Reversible Haloboration, as Harnessed for Boron-Based Electrophilic Cyclization Reactions. J Org Chem 2023; 88:15159-15167. [PMID: 37877549 DOI: 10.1021/acs.joc.3c01653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Different reaction selectivity occurs with the Lewis acids B-chlorocatecholborane (ClBcat), B-bromocatecholborane (BrBcat), and BBr3, favoring either alkyne haloboration, electrophilic cyclization of a tethered nucleophilic sulfur onto the alkyne, or group transfer of the nucleophile. This reaction selectivity also depends on the chain length of the tethered nucleophile, revealing a subtle interplay of relative kinetics and thermodynamics. In all cases, BBr3 reacts readily with alkynes to form haloborated products; however, this process is reversible, and this reversibility can be harnessed to ultimately access regio- and stereodefined cyclic sulfonium zwitterions via the slower but thermodynamically favored electrophilic cyclization pathway. Reversibility was noted by following the reaction by NMR spectroscopy, and by characterizing the kinetic and thermodynamic products by a combination of 2D NMR spectroscopy and single-crystal X-ray diffraction. The "mixed" reagent bromocatechol borane (BrBcat) displayed reactivity between ClBcat and BBr3, producing bromoboration in some cases and electrophilic cyclization in others. With this enhanced understanding of the reaction dynamics, it becomes possible to use boron Lewis acids in a predictable manner in cases where haloboration is the kinetic product but in which the reversibility of this reaction maintains access to eventual alternative reactivity leading to desired building blocks in organic synthesis.
Collapse
Affiliation(s)
- Martin Stang
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| | - Robert J Mycka
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
- Community College of Allegheny County, Pittsburgh, Pennsylvania 15212, United States
| | - Suzanne A Blum
- Department of Chemistry, University of California, Irvine, California 92697-2025, United States
| |
Collapse
|
5
|
Kaplan JA, Blum SA. Iodination-Group-Transfer Reactions to Generate Trisubstituted Iodoalkenes with Regio- and Stereochemical Control. J Org Chem 2023; 88:13236-13247. [PMID: 37656489 DOI: 10.1021/acs.joc.3c01495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
The regio- and stereodefined synthesis of trisubstituted alkenes remains a significant synthetic challenge. Herein, a method is developed for producing regio- and stereodefined trisubstituted iodoalkenes by diverting intermediates from an iodination-electrophilic-cyclization mechanism. Specifically, cyclized sulfonium ion-pair intermediates are diverted to alkenes by ring-opening with nucleophilic iodide. Alternatively, scavenging of the iodide by AgOTf prevents ring-opening, enabling isolation of the sulfonium ion-pair intermediate. Isolation of the ion pair enables access to complementary reactivity, including ring-opening by alternative nucleophiles (i.e., amines), yielding trisubstituted acyclic alkenes and an example acyclic tetrasubstituted alkene. X-ray crystallographic determination of reaction intermediates and products confirms that the initial electrophilic-cyclization step sets the stereo- and regiochemistry of the product. The products serve as synthetic building blocks by readily participating in downstream functionalization reactions, including oxidation, palladium-catalyzed cross-coupling, and nucleophilic displacement.
Collapse
Affiliation(s)
- Joseph A Kaplan
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Suzanne A Blum
- Department of Chemistry, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
6
|
Le L, Li S, Zhang D, Yin SF, Kambe N, Qiu R. Base-Promoted Reactions of Organostibines with Alkynes and Organic Halides to Give Chalcogenated ( Z)-Olefins and Ethers. Org Lett 2022; 24:6159-6164. [PMID: 35973098 DOI: 10.1021/acs.orglett.2c02369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, with air-stable chalcogenated stibines (Sb-ER) as organometallic chalcogenating reagents, we developed base-promoted (Z)-hydrochalcogenation of alkynes with DMSO/DMSO-d6 as hydrogen/deuterium sources, giving chalcogenated (Z)-olefins in good yields and with excellent regioselectivity. These reagents, easily synthesized from halostibines with in situ generated [Zn(ER)2] at room temperature within a few minutes, could be also used in the base-promoted C(sp3)-S(Se) cross-coupling with C(sp3)-X and copper-catalyzed C(sp2)-S(Se) cross-coupling with C(sp2)-X (X = F, CI, Br, I) under mild conditions. This protocol could also be simply extended to organobismuth complexes (Bi-ER) with good functional tolerance.
Collapse
Affiliation(s)
- Liyuan Le
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shuangshuang Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Dejiang Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Nobuaki Kambe
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|