1
|
Du X, Wang T, Li Y, Zhu A, Hu Y, Du A, Zhao Y, Xie W. Monitoring Hot Holes in Plasmonic Catalysis on Silver Nanoparticles by Using an Ion Label. NANO LETTERS 2024; 24:11648-11653. [PMID: 39225486 DOI: 10.1021/acs.nanolett.4c03265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Energetic carriers generated by localized surface plasmon resonance (LSPR) provide an efficient way to drive chemical reactions. However, their dynamics and impact on surface reactions remain unknown due to the challenge in observing hot holes. This makes it difficult to correlate the reduction and oxidation half-reactions involving hot electrons and holes, respectively. Here we detect hot holes in their chemical form, Ag(I), on a Ag surface using surface-enhanced Raman scattering (SERS) of SO32- as a hole-specific label. It allows us to determine the dynamic correlations of hot electrons and holes. We find that the equilibrium of holes is the key factor of the surface chemistry, and the wavelength-dependent plasmonic chemical anode refilling (PCAR) effect plays an important role, in addition to the LSPR, in promoting the electron transfer. This method paves the way for visualizing hot holes with nanoscale spatial resolution toward the rational design of a plasmonic catalytic platform.
Collapse
Affiliation(s)
- Xiaomeng Du
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Teng Wang
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yonglong Li
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Aonan Zhu
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yanfang Hu
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Aoxuan Du
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yan Zhao
- School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China
| | - Wei Xie
- State Key Laboratory of Advanced Chemical Power Sources, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Tianjin Key Laboratory of Biosensing and Molecular Recognition, Haihe Laboratory of Sustainable Chemical Transformations, Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Wang J, Lu Y, Quan W, Hu J, Yang P, Song G, Fu J, Peng Y, Tong L, Ji Q, Zhang Y. Epitaxial Growth of Monolayer WS 2 Single Crystals on Au(111) Toward Direct Surface-Enhanced Raman Spectroscopy Detection. ACS NANO 2024. [PMID: 39263972 DOI: 10.1021/acsnano.4c09187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The epitaxial growth of wafer-scale two-dimensional (2D) semiconducting transition metal dichalcogenides (STMDCs) single crystals is the key premise for their applications in next-generation electronics. Despite significant advancements, some fundamental factors affecting the epitaxy growth have not been fully uncovered, e.g., interface coupling strength, adlayer-substrate lattice matching, substrate step-edge-guiding effects, etc. Herein, we develop a model system to tackle these issues concurrently, and realize the epitaxial growth of wafer-scale monolayer tungsten disulfide (WS2) single crystals on the Au(111) substrate. This epitaxial system is featured with good adlayer-substrate lattice matching, obvious step-edge-guiding effect for the unidirectionally aligned nucleation/growth, and relatively weaker interfacial interaction than that of monolayer MoS2/Au(111), as evidenced by the evolution of a uniform Moiré pattern and an intrinsic band gap, according to on-site scanning tunneling microscopy/spectroscopy (STM/STS) characterizations and density functional theory calculations. Intriguingly, the unidirectionally aligned monolayer WS2 domains along the Au(111) steps can behave as ultrasensitive templates for surface-enhanced Raman scattering detection of organic molecules, due to the obvious charge transfer occurred at substrate step edges. This work should hereby deepen our understanding of the epitaxy mechanism of 2D STMDCs on single-crystal substrates, and propel their wafer-scale production and applications in various cutting-edge fields.
Collapse
Affiliation(s)
- Jialong Wang
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Yue Lu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Wenzhi Quan
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | - Jingyi Hu
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | - Pengfei Yang
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | - Ge Song
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Jiatian Fu
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - You Peng
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | - Lianming Tong
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Qingqing Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Yanfeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
3
|
Ma H, Pan SQ, Wang WL, Yue X, Xi XH, Yan S, Wu DY, Wang X, Liu G, Ren B. Surface-Enhanced Raman Spectroscopy: Current Understanding, Challenges, and Opportunities. ACS NANO 2024; 18:14000-14019. [PMID: 38764194 DOI: 10.1021/acsnano.4c02670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
While surface-enhanced Raman spectroscopy (SERS) has experienced substantial advancements since its discovery in the 1970s, it is an opportunity to celebrate achievements, consider ongoing endeavors, and anticipate the future trajectory of SERS. In this perspective, we encapsulate the latest breakthroughs in comprehending the electromagnetic enhancement mechanisms of SERS, and revisit CT mechanisms of semiconductors. We then summarize the strategies to improve sensitivity, selectivity, and reliability. After addressing experimental advancements, we comprehensively survey the progress on spectrum-structure correlation of SERS showcasing their important role in promoting SERS development. Finally, we anticipate forthcoming directions and opportunities, especially in deepening our insights into chemical or biological processes and establishing a clear spectrum-structure correlation.
Collapse
Affiliation(s)
- Hao Ma
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Si-Qi Pan
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, Xiamen University, Xiamen 361102, China
| | - Wei-Li Wang
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, Xiamen University, Xiamen 361102, China
| | - Xiaxia Yue
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiao-Han Xi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Sen Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - De-Yin Wu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xiang Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Guokun Liu
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, Xiamen University, Xiamen 361102, China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (i-ChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
4
|
Shi Z, Wu P, Xi H, You T, Gao Y, Yin P. Exploring the surface plasmon catalytic reactions mechanism by three-phase interface modification combining with in-situ EC-SERS methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 309:123834. [PMID: 38198990 DOI: 10.1016/j.saa.2023.123834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/26/2023] [Accepted: 12/31/2023] [Indexed: 01/12/2024]
Abstract
Local surface plasmon resonance (LSPR) is a novel catalytic technique that has emerged in recent years, especially in the catalysis of aromatic amine compounds. However, the response process and mechanism are still unclear in current study. In the current field of study, the response process and mechanism are still unclear. In this work, the gas-liquid-solid three-phase interface (GLSTI) was innovatively utilized in this study to validate the reaction mechanism by surface-enhanced Raman spectroscopy. P-Aminothiophenol (PATP) and P-Phenylenediamine (PDA) underwent a surface plasmon-catalyzed reaction by using a silver nano-dendrites substrate with strong SERS activity. The GLSTI significantly facilitates the occurrence of surface plasmon catalytic reactions, which can supply enough oxygen by providing three-phase points. In situ SERS and EC-SERS technologies were combined in this study for the explorations. Therefore, this work is dedicated to deepening the exploration and expanding into new directions in plasmon-induced catalytic reactions.
Collapse
Affiliation(s)
- Ziqian Shi
- School of Energy and Power Engineering, Beihang University, Beijing 100191, China
| | - Pengfei Wu
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Hongyan Xi
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Tingting You
- School of Chemistry, Beihang University, Beijing 100191, China
| | - Yukun Gao
- School of Chemistry, Beihang University, Beijing 100191, China.
| | - Penggang Yin
- School of Chemistry, Beihang University, Beijing 100191, China.
| |
Collapse
|
5
|
Zhang C, Tan J, Du B, Ji C, Pei Z, Shao M, Jiang S, Zhao X, Yu J, Man B, Li Z, Xu K. Reversible Thermoelectric Regulation of Electromagnetic and Chemical Enhancement for Rapid SERS Detection. ACS APPLIED MATERIALS & INTERFACES 2024; 16:12085-12094. [PMID: 38385172 DOI: 10.1021/acsami.3c18409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Actively controlling surface-enhanced Raman scattering (SERS) performance plays a vital role in highly sensitive detection or in situ monitoring. Nevertheless, it is still challenging to achieve further modulation of electromagnetic enhancement and chemical enhancement simultaneously in SERS detection. In this study, a silver nanocavity structure with graphene as a spacer layer is coupled with thermoelectric semiconductor P-type gallium nitride (GaN) to form an electric-field-induced SERS (E-SERS) for dual enhancement. After applying the electric field, the intensity of SERS signals is further enhanced by over 10 times. The thermoelectric field enables fast and reproducible doping of graphene, thereby modulating its Fermi level over a wide range. The thermoelectric field also regulates the position of the plasmon resonance peak of the silver nanocavity structure, rendering synchronous dual electromagnetic and chemical regulation. Additionally, the method enables the trace detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). A detailed theoretical analysis is performed based on the experimental results and finite-element calculations, paving the way for the fabrication of high-efficient E-SERS substrates.
Collapse
Affiliation(s)
- Chao Zhang
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Jibing Tan
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Baoqiang Du
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Chang Ji
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Zhiyang Pei
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Mingrui Shao
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Shouzhen Jiang
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Xiaofei Zhao
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Jing Yu
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Baoyuan Man
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Zhen Li
- Shandong Provincial Engineering and Technical Center of Light Manipulation, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Kaichen Xu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
6
|
Ge Y, Yang Y, Zhu Y, Yuan M, Sun L, Jiang D, Liu X, Zhang Q, Zhang J, Wang Y. 2D TiS 2-Nanosheet-Coated Concave Gold Arrays with Triple-Coupled Resonances as Sensitive SERS Substrates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302410. [PMID: 37635113 DOI: 10.1002/smll.202302410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 08/18/2023] [Indexed: 08/29/2023]
Abstract
Herein, a hybrid substrate for surface-enhanced Raman scattering (SERS) is fabricated, which couples localized surface plasmon resonance (LSPR), charge transfer (CT) resonance, and molecular resonance. Exfoliated 2D TiS2 nanosheets with semimetallic properties accelerate the CT with the tested analytes, inducing a remarkable chemical mechanism enhancement. In addition, the LSPR effect is coupled with a concave gold array located underneath the thin TiS2 nanosheet, providing a strong electromagnetic enhancement. The concave gold array is prepared by etching silicone nanospheres assembled on larger polystyrene nanospheres, followed by depositing a gold layer. The LSPR intensity near the gold layer can be adjusted by changing the layer thickness to couple the molecular and CT resonances, in order to maximize the SERS enhancement. The best SERS performance is recorded on TiS2-nanosheet-coated plasmonic substrates, with a detectable methylene blue concentration down to 10-13 m and an enhancement factor of 2.1 × 109 and this concentration is several orders of magnitude lower than that of the TiS2 nanosheet (10-11 m) and plasmonic substrates (10-9 m). The present hybrid substrate with triple-coupled resonance further shows significant advantages in the label-free monitoring of curcumin (a widely applied drug for treating multiple cancers and inflammations) in serum and urine.
Collapse
Affiliation(s)
- Yuancai Ge
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Ying Yang
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Yajie Zhu
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Meiling Yuan
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Liangbin Sun
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Danfeng Jiang
- Wenzhou Institute, University of Chinese Academy of Sciences, Jinlian Road 1, Wenzhou, 325001, China
| | - Xiaohu Liu
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
| | - Qingwen Zhang
- Wenzhou Institute, University of Chinese Academy of Sciences, Jinlian Road 1, Wenzhou, 325001, China
| | - Jinyi Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry, Wenzhou Medical University, Wenzhou, China
| | - Yi Wang
- School of Biomedical Engineering, School of Ophthalmology & Optometry, Wenzhou Medical University, Xueyuan Road 270, Wenzhou, 325027, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Jinlian Road 1, Wenzhou, 325001, China
| |
Collapse
|
7
|
Shen J, Zhang J, Fu Z, Pan Y, Li X, Wu S, Shan Y, Liu L. Dynamic repulsive interaction enables an asymmetric electron-phonon coupling for improving Raman scattering. Phys Chem Chem Phys 2024; 26:7343-7350. [PMID: 38369913 DOI: 10.1039/d3cp05835b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Two-dimensional (2D) materials are an excellent platform for surface-enhanced Raman spectroscopy (SERS). For ReS2, the Raman enhancement effect can be highly improved through the dipole-dipole interactions and synergistic resonance effects in the phase-engineering ReS2 films. However, the performance of the substrate can be improved further through regulating the electronic interaction between the ReS2 and probe molecules. Herein, a dynamic coulomb repulsion strategy is proposed to trigger an electronic state redistribution by asymmetric electrostatic interactions. With the phase-engineering ReS2/graphene heterostructure as a prototype, under laser excitation, the generated hot electrons in graphene and ReS2 can repel each other due to Coulomb interaction, which breaks the symmetrical distribution of hot electrons in ReS2, and increases the electronic concentration at the interface between ReS2 and the probe molecule. With R6G as the probe molecule, the asymmetric electron distribution and synergistic resonance effects on their interface improve the limit of detection to 10-12 M with an EF of 2.15 × 108. Meanwhile, the heterostructure also shows good uniformity, stability as well as unique anisotropy. This strategy can be generalized to other 2D heterostructures to obtain the ultrasensitive SERS substrates.
Collapse
Affiliation(s)
- Jiawei Shen
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Jiaxin Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Zirui Fu
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Yan Pan
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Xiaowan Li
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Shuyi Wu
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, People's Republic of China.
| | - Yun Shan
- Key Laboratory of Advanced Functional Materials of Nanjing, Nanjing Xiaozhuang University, Nanjing 211171, People's Republic of China.
| | - Lizhe Liu
- National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, People's Republic of China.
| |
Collapse
|
8
|
Yang JL, Wang HJ, Qi X, Zheng QN, Tian JH, Zhang H, Li JF. Understanding the Behaviors of Plasmon-Induced Hot Carriers and Their Applications in Photocatalysis. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38412551 DOI: 10.1021/acsami.4c00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Photocatalysis driven by plasmon-induced hot carriers has been gaining increasing attention. Recent studies have demonstrated that plasmon-induced hot carriers can directly participate in photocatalytic reactions, leading to great enhancement in solar energy conversion efficiency, by improving the catalytic activity or changing selectivity. Nevertheless, the utilization efficiency of hot carriers remains unsatisfactory. Therefore, how to correctly understand the generation and transfer process of hot carriers, as well as accurately differentiate between the possible mechanisms, have become a key point of attention. In this review, we overview the fundamental processes and mechanisms underlying hot carrier generation and transport, followed by highlighting the importance of hot carrier monitoring methods and related photocatalytic reactions. Furthermore, possible strategies for the further characterization of plasmon-induced hot carriers and boosting their utilization efficiency have been proposed. We hope that a comprehensive understanding of the fundamental behaviors of hot carriers can aid in designing more efficient photocatalysts for plasmon-induced photocatalytic reactions.
Collapse
Affiliation(s)
- Jing-Liang Yang
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang 550025, China
| | - Hong-Jia Wang
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, China
| | - Xiaosi Qi
- College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang 550025, China
| | - Qing-Na Zheng
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, China
| | - Jing-Hua Tian
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| | - Hua Zhang
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
| | - Jian-Feng Li
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Energy, Fujian Key Laboratory of Advanced Materials, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361102, China
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| |
Collapse
|
9
|
Peng W, Zhou JW, Li ML, Sun L, Zhang YJ, Li JF. Construction of nanoparticle-on-mirror nanocavities and their applications in plasmon-enhanced spectroscopy. Chem Sci 2024; 15:2697-2711. [PMID: 38404398 PMCID: PMC10882497 DOI: 10.1039/d3sc05722d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/11/2024] [Indexed: 02/27/2024] Open
Abstract
Plasmonic nanocavities exhibit exceptional capabilities in visualizing the internal structure of a single molecule at sub-nanometer resolution. Among these, an easily manufacturable nanoparticle-on-mirror (NPoM) nanocavity is a successful and powerful platform for demonstrating various optical phenomena. Exciting advances in surface-enhanced spectroscopy using NPoM nanocavities have been developed and explored, including enhanced Raman, fluorescence, phosphorescence, upconversion, etc. This perspective emphasizes the construction of NPoM nanocavities and their applications in achieving higher enhancement capabilities or spatial resolution in dark-field scattering spectroscopy and plasmon-enhanced spectroscopy. We describe a systematic framework that elucidates how to meet the requirements for studying light-matter interactions through the creation of well-designed NPoM nanocavities. Additionally, it provides an outlook on the challenges, future development directions, and practical applications in the field of plasmon-enhanced spectroscopy.
Collapse
Affiliation(s)
- Wei Peng
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jing-Wen Zhou
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Mu-Lin Li
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Lan Sun
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Yue-Jiao Zhang
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
| | - Jian-Feng Li
- College of Energy, State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
- College of Chemistry, Chemical Engineering and Environment, Minnan Normal University Zhangzhou 363000 China
| |
Collapse
|
10
|
Wei Y, Fan X, Chen D, Zhu X, Yao L, Zhao X, Tang X, Wang J, Zhang Y, Qiu T, Hao Q. Probing Oxidation Mechanisms in Plasmonic Catalysis: Unraveling the Role of Reactive Oxygen Species. NANO LETTERS 2024; 24:2110-2117. [PMID: 38290214 DOI: 10.1021/acs.nanolett.3c04979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Plasmon-induced oxidation has conventionally been attributed to the transfer of plasmonic hot holes. However, this theoretical framework encounters challenges in elucidating the latest experimental findings, such as enhanced catalytic efficiency under uncoupled irradiation conditions and superior oxidizability of silver nanoparticles. Herein, we employ liquid surface-enhanced Raman spectroscopy (SERS) as a real-time and in situ tool to explore the oxidation mechanisms in plasmonic catalysis, taking the decarboxylation of p-mercaptobenzoic acid (PMBA) as a case study. Our findings suggest that the plasmon-induced oxidation is driven by reactive oxygen species (ROS) rather than hot holes, holding true for both the Au and Ag nanoparticles. Subsequent investigations suggest that plasmon-induced ROS may arise from hot carriers or energy transfer mechanisms, exhibiting selectivity under different experimental conditions. The observations were substantiated by investigating the cleavage of the carbon-boron bonds. Furthermore, the underlying mechanisms were clarified by energy level theories, advancing our understanding of plasmonic catalysis.
Collapse
Affiliation(s)
- Yunjia Wei
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Xingce Fan
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Dexiang Chen
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Xiangnan Zhu
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Lei Yao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Xing Zhao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Xiao Tang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Jiawei Wang
- School of Electronic and Information Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, People's Republic of China
| | - Yuanjian Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, People's Republic of China
| | - Teng Qiu
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| | - Qi Hao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, People's Republic of China
| |
Collapse
|
11
|
Zheng X, Ye Z, Akmal Z, He C, Zhang J, Wang L. Recent progress in SERS monitoring of photocatalytic reactions. Chem Soc Rev 2024; 53:656-683. [PMID: 38165865 DOI: 10.1039/d3cs00462g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a powerful analytical technique renowned for its ultra-high sensitivity. Extensive research in SERS has led to the development of a wide range of SERS substrates, including plasmonic metals, semiconductors, metal organic frameworks, and their assemblies. Some of these materials are also excellent photocatalysts, and by taking advantage of their bifunctional characteristics, the photocatalytic processes that occur on their surface can be monitored in situ via SERS. This provides us with unique opportunities to gain valuable insights into the intricate details of the photocatalytic processes that are challenging to access using other techniques. In this review, we highlight key development in in situ and/or real-time SERS-tracking of photocatalytic reactions. We begin by providing a brief account of recent developments in SERS substrates, followed by discussions on how SERS can be used to elucidate crucial aspects of photocatalytic processes, including: (1) the influence of the surrounding media on charge carrier extraction; (2) the direction of charge carrier transfer; (3) the pathway of photocatalytic activation; and (4) differentiation between the effects of photo-thermal and energetic electrons. Additionally, we discuss the benefits of tip-enhanced Raman spectroscopy (TERS) due to the ability to achieve high-spatial-resolution measurements. Finally, we address major challenges and propose potential directions for the future of SERS monitoring of photocatalytic reactions. By leveraging the capabilities of SERS, we can uncover new insights into photocatalytic processes, paving the way for advancements in sustainable energy and environmental remediation.
Collapse
Affiliation(s)
- Xinlu Zheng
- Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science &Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Ziwei Ye
- Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science &Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Zeeshan Akmal
- Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science &Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Chun He
- Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science &Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Jinlong Zhang
- Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science &Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Lingzhi Wang
- Shanghai Engineering Research Center for Multi-Media Environmental Catalysis and Resource Utilization, Key Lab for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science &Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
12
|
He L, Luo J, Zhu P, Hou H, Ji X, Hu J. Molecular-Enhanced Raman Spectroscopy Driven by Phosphoester Electron-Transfer Bridge. J Phys Chem Lett 2023; 14:7045-7052. [PMID: 37526196 DOI: 10.1021/acs.jpclett.3c01737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Although both electromagnetic and charge transfer (CT) mechanisms play a role in surface-enhanced Raman scattering (SERS), the contribution of the latter is limited by poor CT efficiency. Herein, we propose molecular-enhanced Raman spectroscopy (MERS) for the first time and develop a simple strategy to induce strong CT-enhanced Raman signals using a phosphoester (POE) electron-transfer bridge. Consequently, an excellent POE-enhanced Raman effect was found when various mono-, bis-, and trisaminobenzene compounds were used as probe analytes. Quantification analysis of this MERS effect revealed that the enhancement ratio and factor of the POE molecules can be up to 87% and ∼109, respectively. Spectroscopic analysis and density functional theory calculation confirmed that this effect was because of the formation of intermolecular hydrogen bonds, which promotes CT via electronic reorganization and enhances the Raman signals of target analytes. These results demonstrate the feasibility of MERS for highly CT-enhanced Raman signals.
Collapse
Affiliation(s)
- Lili He
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Jia Luo
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Pengfei Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Hongshuai Hou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Xiaobo Ji
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Jiugang Hu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| |
Collapse
|
13
|
Huang XX, Wang HJ, Yang JL, Yue MF, Wang YH, Zhang H, Li JF. Direct S-H Evidence Revealing the Photo-electrocatalytic Hydrogen Evolution Reaction Mechanism on CdS Using Surface-Enhanced Raman Spectroscopy. J Phys Chem Lett 2023; 14:4026-4032. [PMID: 37093583 DOI: 10.1021/acs.jpclett.3c00701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Photoelectrocatalytic water splitting using metal sulfides is a promising method for green hydrogen production. However, in situ probing of the hydrogen evolution reaction (HER) on sulfides with excellent performance remains a challenge. Here, we construct Au@CdS core-shell nanoparticles to study the HER on CdS, a typical HER catalyst, by surface-enhanced Raman spectroscopy (SERS) using a "borrowing" strategy. We directly capture the spectroscopic evidence of S-H intermediate under HER condition, further verified by isotopic experiments. Moreover, the population of S-H intermediates is improved by injecting charge carriers through light illumination and the S-H bond is weakened by introducing Pt to form a Au@Pt@CdS structure to change the interfacial electronic structure, both of them resulting in significant HER performance improvement. These findings can deepen the understanding of the HER mechanism and offer strategies for designing of cost-effective HER catalyst with high performance.
Collapse
Affiliation(s)
- Xiao-Xuan Huang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, iChEM, Xiamen University, Xiamen 361005, China
| | - Hong-Jia Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, iChEM, Xiamen University, Xiamen 361005, China
| | - Jing-Liang Yang
- College of Physics, Guizhou University, Guizhou 550025, China
| | - Mu-Fei Yue
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, iChEM, Xiamen University, Xiamen 361005, China
| | - Yao-Hui Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, iChEM, Xiamen University, Xiamen 361005, China
| | - Hua Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, iChEM, Xiamen University, Xiamen 361005, China
| | - Jian-Feng Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, College of Materials, College of Energy, iChEM, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
| |
Collapse
|
14
|
Zhao X, Chu Q, Guo S, Park E, Jin S, Chen L, Liu Y, Jung YM. Controllable hot electron transfer in the Ag/MoO 3 layer by layer system: Thickness-dependent MoO 3 layer. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 286:121995. [PMID: 36283206 DOI: 10.1016/j.saa.2022.121995] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/26/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
The Ag and MoO3 layer-by-layer sputtering method was employed to fabricate Ag/MoO3 coated on a polystyrene (PS) array (Ag/MoO3@PS), which exhibited excellent surface-enhanced Raman scattering (SERS) activity. The thickness of the MoO3 layer was controlled by changing the sputtering power. The SERS intensity of 4-aminothiophenol (PATP) on Ag/MoO3@PS with a 2 nm thickness of the MoO3 layer was comparable to that on pure Ag coated on the PS array (Ag@PS). This is possible because hot electrons were injected from Ag into the MoO3 layer to enhance the photocatalyst reaction; thus, the SERS spectra of coupled PATP were obtained. The transport of hot electrons rapidly decayed and was blocked with increasing thickness of the MoO3 layer from 2 nm to 9 nm. Thus, the SERS intensity decreased, and interestingly, the b2 mode of PATP decreased and nearly disappeared. This study provides new insight into the control of hot electron reduction for catalytic reduction process monitoring.
Collapse
Affiliation(s)
- Xingyu Zhao
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, PR China
| | - Qi Chu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, PR China
| | - Shuang Guo
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Eungyeong Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sila Jin
- Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Lei Chen
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, PR China.
| | - Yucun Liu
- Key Laboratory of Preparation and Applications of Environmental Friendly Materials, Ministry of Education, College of Chemistry, Jilin Normal University, Changchun 130103, PR China.
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea; Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
15
|
Li J, Wang S, Yue MF, Xing SM, Zhang YJ, Dong JC, Zhang H, Chen Z, Li JF. Graphene-Isolated Satellite Nanostructure Enhanced Raman Spectroscopy Reveals the Critical Role of Different Intermediates on the Oxygen Reduction Reaction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jia Li
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen 361005, China
| | - Shen Wang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Mu-Fei Yue
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen 361005, China
| | - Shu-Ming Xing
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen 361005, China
| | - Yue-Jiao Zhang
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen 361005, China
| | - Jin-Chao Dong
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen 361005, China
| | - Hua Zhang
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen 361005, China
| | - Zhuo Chen
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Hunan University, Changsha 410082, China
| | - Jian-Feng Li
- College of Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Fujian Key Laboratory of Advanced Materials, College of Energy, Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| |
Collapse
|
16
|
Yan J, Ye M, Zhang Y, Tang Y, Liu X, Li CC. Graphene‐Enabled Electric‐Field Regulation and Ionic Redistribution Around Lithiophilic Aurum Nanoparticles Toward a Dendrite‐Free and 2000‐Cycle‐Life Lithium Metal Battery. Chemistry 2022; 28:e202201151. [DOI: 10.1002/chem.202201151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Jianping Yan
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Minghui Ye
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Yufei Zhang
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Yongchao Tang
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Xiaoqing Liu
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Cheng Chao Li
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| |
Collapse
|
17
|
Guan J, Wu S, Li L, Wang X, Ji W, Ozaki Y. New Insights of Charge Transfer at Metal/Semiconductor Interfaces for Hot-Electron Generation Studied by Surface-Enhanced Raman Spectroscopy. J Phys Chem Lett 2022; 13:3571-3578. [PMID: 35426671 DOI: 10.1021/acs.jpclett.2c00239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Plasmonic nanostructures with hot spots are very efficient in generating energetic (hot) electrons to realize light-driven chemical reactions. This effect primarily originates from high electric fields with nonuniform distribution in the hot-spot area. However, charge-transfer (CT) at plasmonic nanostructure interfaces and its effect on hot-electron generation have not been explored in detail. Here, a series of semiconductor/metal interfaces, with continuously adjustable energy-band structures, were constructed by the assembly of CdxZn1-xS supports and Au nanoparticles (NPs) interconnected with p-aminothiophenol (PATP) molecules. The plasmon-mediated oxidation of PATP embedded in CdxZn1-xS/PATP/45 nm-Au NP molecular junctions was systematically investigated using gap-mode-liked surface-enhanced Raman spectroscopy (SERS). Combining in situ SERS studies with energy-level analysis, interfacial CT was found to be a primary determinant of hot-electron-induced oxygen activation on large Au NP surfaces. This study provides a new perspective on the hot-electron generation mechanism to facilitate the rational design of efficient plasmonic photocatalysts.
Collapse
Affiliation(s)
- Jing Guan
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Shuo Wu
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Linfang Li
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xiuyun Wang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Wei Ji
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 145040, China
| | - Yukihiro Ozaki
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|