1
|
Solé-Àvila H, Puriņš M, Eichenberger L, Waser J. Enamine Synthesis via Regiocontrolled 6-endo-dig and 5-exo-dig Tethered Carboamination of Propargylic Alcohols. Angew Chem Int Ed Engl 2024:e202411383. [PMID: 39145375 DOI: 10.1002/anie.202411383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/30/2024] [Accepted: 08/14/2024] [Indexed: 08/16/2024]
Abstract
Enamines are versatile building blocks for the synthesis of biologically active compounds. Nevertheless, only a limited number of strategies have been reported for preparing trisubstituted enamines in a regio- and stereoselective manner. Herein, we report a regiocontrolled 6-endo and 5-exo tethered carboamination of propargylic alcohols for the synthesis of trisubstituted enamines. High regioselectivity was achieved through fine-tuning of the amine protecting group during the Pd-catalyzed carboamination. The introduced trifluoromethylated tether enables further stereoselective functionalizations, such as hydrogenation and fluorination.
Collapse
Affiliation(s)
- Helena Solé-Àvila
- Laboratory of Catalysis and Organic Synthesis and NCCR Catalysis, Institut des Sciences et Ingénierie Chimique, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Mikus Puriņš
- Laboratory of Catalysis and Organic Synthesis and NCCR Catalysis, Institut des Sciences et Ingénierie Chimique, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Lucas Eichenberger
- Laboratory of Catalysis and Organic Synthesis and NCCR Catalysis, Institut des Sciences et Ingénierie Chimique, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis and NCCR Catalysis, Institut des Sciences et Ingénierie Chimique, École Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| |
Collapse
|
2
|
Hu W, Li M, Xiong W, Zhou S, Zou Q, Lü JT, Tian H, Guo X. Real-Time Direct Monitoring of Chirality Fixation and Recognition at the Single-Molecule Level. J Am Chem Soc 2024; 146:17765-17772. [PMID: 38902874 DOI: 10.1021/jacs.4c03071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Chirality, a fundamental attribute of nature, significantly influences a wide range of phenomena related to physical properties, chemical reactions, biological pharmacology, and so on. As a pivotal aspect of chirality research, chirality recognition contributes to the synthesis of complex chiral products from simple chiral compounds and exhibits intricate interplay between chiral materials. However, macroscopic detection technologies cannot unveil the dynamic process and intrinsic mechanisms of single-molecule chirality recognition. Herein, we present a single-molecule detection platform based on graphene-molecule-graphene single-molecule junctions to measure the chirality recognition involving interactions between amines and chiral alcohols. This approach leads to the realization of in situ and real-time direct observation of chirality recognition at the single-molecule level, demonstrating that chiral alcohols exhibit compelling potential to induce the formation of the corresponding chiral configuration of molecules. The amalgamation of theoretical analyses with experimental findings reveals a synergistic action between electrostatic interactions and steric hindrance effects in the chirality recognition process, thus substantiating the microscopic mechanism governing the chiral structure-activity relationship. These studies open up a pathway for exploring novel chiral phenomena from the fundamental limits of chemistry, such as chiral origin and chiral amplification, and offer important insights into the precise synthesis of chiral materials.
Collapse
Affiliation(s)
- Weilin Hu
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Mingyao Li
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Wan Xiong
- School of Physics, Institute for Quantum Science and Engineering and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, P. R. China
| | - Shuyao Zhou
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Qi Zou
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Xuhui District, Shanghai 200237, P. R. China
| | - Jing-Tao Lü
- School of Physics, Institute for Quantum Science and Engineering and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, 1037 Luoyu Road, Hongshan District, Wuhan 430074, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Xuhui District, Shanghai 200237, P. R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
| |
Collapse
|
3
|
Gao Q, Xu S. Site- and Stereoselective C(sp 3 )-H Borylation of Strained (Hetero)Cycloalkanols Enabled by Iridium Catalysis. Angew Chem Int Ed Engl 2023; 62:e202218025. [PMID: 36581587 DOI: 10.1002/anie.202218025] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 12/31/2022]
Abstract
Transition metal-catalyzed site- and stereoselective C-H activation of strained (hetero)cycloalkanes remains a formidable challenge. We herein report a carbamate-directed iridium-catalyzed asymmetric β-C(sp3 )-H borylation of cyclopropanol derivatives. A variety of densely functionalized cyclopropanols were obtained in good enantioselectivities via desymmetrization and kinetic resolution. In addition, site-selective C(sp3 )-H borylation of methine groups furnished α-borylated (hetero)cycloalkanols in moderate to good yields. The synthetic utility of the method was further shown in a gram-scale synthesis and diverse downstream transformations of borylated products.
Collapse
Affiliation(s)
- Qian Gao
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Senmiao Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Straub H, Ryabchuk P, Rubina M, Rubin M. Preparation of Chiral Enantioenriched Densely Substituted Cyclopropyl Azoles, Amines, and Ethers via Formal SN2′ Substitution of Bromocylopropanes. Molecules 2022; 27:molecules27207069. [PMID: 36296663 PMCID: PMC9609026 DOI: 10.3390/molecules27207069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/16/2022] Open
Abstract
Enantiomerically enriched cyclopropyl ethers, amines, and cyclopropylazole derivatives possessing three stereogenic carbon atoms in a small cycle are obtained via the diastereoselective, formal nucleophilic substitution of chiral, non-racemic bromocyclopropanes. The key feature of this methodology is the utilization of the chiral center of the cyclopropene intermediate, which governs the configuration of the two adjacent stereocenters that are successively installed via 1,4-addition/epimerization sequence.
Collapse
Affiliation(s)
- Hillary Straub
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Pavel Ryabchuk
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Marina Rubina
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
- Department of Chemistry, North Caucasus Federal University, 355009 Stavropol, Russia
| | - Michael Rubin
- Department of Chemistry, University of Kansas, Lawrence, KS 66045, USA
- Department of Chemistry, North Caucasus Federal University, 355009 Stavropol, Russia
- Correspondence:
| |
Collapse
|
6
|
Larcombe CN, Malins LR. Accessing Diverse Cross-Benzoin and α-Siloxy Ketone Products via Acyl Substitution Chemistry. J Org Chem 2022; 87:9408-9413. [PMID: 35758296 DOI: 10.1021/acs.joc.2c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An approach to diverse cross-benzoin and α-siloxy ketone products which leverages a simple yet underutilized C-C bond disconnection strategy is reported. Acyl substitution of readily accessible α-siloxy Weinreb amides with organolithium compounds enables access to a broad scope of aryl, heteroaryl, alkyl, alkenyl, and alkynyl derivatives. Enantiopure benzoins can be accessed via a chiral pool approach, and the utility of accessible cross-benzoins and α-siloxy ketones is highlighted in a suite of downstream synthetic applications.
Collapse
Affiliation(s)
- Chloe N Larcombe
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| | - Lara R Malins
- Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
7
|
Das A, Buzzetti L, Puriņš M, Waser J. Palladium-Catalyzed trans-Hydroalkoxylation: Counterintuitive Use of an Aryl Iodide Additive to Promote C–H Bond Formation. ACS Catal 2022; 12:7565-7570. [PMID: 35799768 PMCID: PMC9251722 DOI: 10.1021/acscatal.2c01809] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/03/2022] [Indexed: 12/31/2022]
Abstract
![]()
We report an enantioselective
palladium-catalyzed trans-hydroalkoxylation of propargylic
amines with a trifluoroacetaldehyde-derived
tether to build chiral oxazolidines. Diastereoselective hydrogenation
using a heterogeneous palladium catalyst then gave access to protected
benzylic amino alcohols in 45–87% yields and 84–94%
ee values. Hydroalkoxylation of the alkynes required a catalytic amount
of aryl iodide, highlighting the counterintuitive key role played
by a putative Pd(II)/ArI oxidative addition complex to promote oxypalladation/protodemetalation.
Collapse
Affiliation(s)
- Ashis Das
- Laboratory of Catalysis and Organic Synthesis and NCCR Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 1402, 1015 Lausanne, Switzerland
| | - Luca Buzzetti
- Laboratory of Catalysis and Organic Synthesis and NCCR Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 1402, 1015 Lausanne, Switzerland
| | - Mikus Puriņš
- Laboratory of Catalysis and Organic Synthesis and NCCR Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 1402, 1015 Lausanne, Switzerland
| | - Jerome Waser
- Laboratory of Catalysis and Organic Synthesis and NCCR Catalysis, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 1402, 1015 Lausanne, Switzerland
| |
Collapse
|