1
|
Cao S, Zhang H, Chen M, Zhu N, Zhan B, Xu P, Chen X, Yu B, Zhang X. Regiodivergent Functionalization of Protected and Unprotected Carbohydrates using Photoactive 4-Tetrafluoropyridinylthio Fragment as an Adaptive Activating Group. Angew Chem Int Ed Engl 2024:e202412436. [PMID: 39206505 DOI: 10.1002/anie.202412436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
The selective functionalization of carbohydrates holds a central position in synthetic carbohydrate chemistry, driving the ongoing quest for ideal approaches to manipulate these compounds. In this study, we introduce a general strategy that enables the regiodivergent functionalization of saccharides. The use of electron-deficient photoactive 4-tetrafluoropyridinylthio (SPyf) fragment as an adaptable activating group, facilitated efficient functionalization across all saccharide sites. More importantly, this activating group can be directly installed at the C1, C5 and C6 positions of biomass-derived carbohydrates in a single step and in a site-selective manner, allowing for the efficient and precision-oriented modification of unprotected saccharides and glycans.
Collapse
Affiliation(s)
- Shen Cao
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| | - Haobo Zhang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| | - Mingshuo Chen
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| | - Niming Zhu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| | - Beibei Zhan
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| | - Peng Xu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xiaoping Chen
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| | - Biao Yu
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Xiaheng Zhang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, P. R. China
| |
Collapse
|
2
|
Guo H, Tan D, Merten C, Loh CCJ. Enantioconvergent and Site-Selective Etherification of Carbohydrate Polyols through Chiral Copper Radical Catalysis. Angew Chem Int Ed Engl 2024:e202409530. [PMID: 39152096 DOI: 10.1002/anie.202409530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/28/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Going beyond currently reported two electron transformations that formed the core backdrop of asymmetric catalytic site-selective carbohydrate polyol functionalizations, we herein report a seminal demonstration of an enantioconvergent copper catalyzed site-selective etherification of minimally protected saccharides through a single-electron radical pathway. Further, this strategy paves a rare strategy, through which a carboxamide scaffold that is present in some glycomimetics of pharmacological relevance, can be selectively introduced. In light of the burgeoning interest in chiral radical catalysis, and the virtual absence of such stereocontrol broadly in carbohydrate synthesis, our strategy showcased the unknown capability of chiral radical copper catalysis as a contemporary tool to address the formidable site-selectivity challenge on a remarkable palette of naturally occurring saccharides. When reducing sugars were employed, a further dynamic kinetic resolution type glycosylation can be activated by the catalytic system to selectively generate the challenging β-O-glycosides.
Collapse
Affiliation(s)
- Hao Guo
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Dilber Tan
- Organische Chemie II, Fakultät für Chemie und Biochemie, Ruhr-University, Universitätsstraße 150, 44801, Bochum, Germany
| | - Christian Merten
- Organische Chemie II, Fakultät für Chemie und Biochemie, Ruhr-University, Universitätsstraße 150, 44801, Bochum, Germany
| | - Charles C J Loh
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
- UCD School of Chemistry, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
3
|
Goi S, Shigeta H, Takahashi D, Toshima K. Photo-induced glycosylation using the edible polyphenol curcumin. Org Biomol Chem 2024; 22:5546-5551. [PMID: 38814007 DOI: 10.1039/d4ob00624k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Photo-induced glycosylations of trichloroacetimidate donors and alcohols using an edible polyphenol, curcumin, were examined under visible photo-irradiation (470 nm). It was found, for the first time, that these glycosylations proceed smoothly under mild reaction conditions to give the corresponding glycosides in high yields. In addition, the present glycosylation method was applicable to a wide range of trichloroacetimidate donors and alcohol acceptors and showed high chemoselectivity over glycosyl phosphite, phosphate, (N-phenyl)trifluoroacetimidate, fluoride, glycal and thioglycoside.
Collapse
Affiliation(s)
- Satomi Goi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Hidenari Shigeta
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Daisuke Takahashi
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Kazunobu Toshima
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| |
Collapse
|
4
|
Harvey DJ. Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: An update for 2021-2022. MASS SPECTROMETRY REVIEWS 2024. [PMID: 38925550 DOI: 10.1002/mas.21873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 06/28/2024]
Abstract
The use of matrix-assisted laser desorption/ionization (MALDI) mass spectrometry for the analysis of carbohydrates and glycoconjugates is a well-established technique and this review is the 12th update of the original article published in 1999 and brings coverage of the literature to the end of 2022. As with previous review, this review also includes a few papers that describe methods appropriate to analysis by MALDI, such as sample preparation, even though the ionization method is not MALDI. The review follows the same format as previous reviews. It is divided into three sections: (1) general aspects such as theory of the MALDI process, matrices, derivatization, MALDI imaging, fragmentation, quantification and the use of computer software for structural identification. (2) Applications to various structural types such as oligo- and polysaccharides, glycoproteins, glycolipids, glycosides and biopharmaceuticals, and (3) other general areas such as medicine, industrial processes, natural products and glycan synthesis where MALDI is extensively used. Much of the material relating to applications is presented in tabular form. MALDI is still an ideal technique for carbohydrate analysis, particularly in its ability to produce single ions from each analyte and advancements in the technique and range of applications show little sign of diminishing.
Collapse
|
5
|
Wang C, Krupp A, Strohmann C, Grabe B, Loh CCJ. Harnessing Multistep Chalcogen Bonding Activation in the α-Stereoselective Synthesis of Iminoglycosides. J Am Chem Soc 2024; 146:10608-10620. [PMID: 38564319 PMCID: PMC11027159 DOI: 10.1021/jacs.4c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
The use of noncovalent interactions (NCIs) has received significant attention as a pivotal synthetic handle. Recently, the exploitation of unconventional NCIs has gained considerable traction in challenging reaction manifolds such as glycosylation due to their capacity to facilitate entry into difficult-to-access sugars and glycomimetics. While investigations involving oxacyclic pyrano- or furanoside scaffolds are relatively common, methods that allow the selective synthesis of biologically important iminosugars are comparatively rare. Here, we report the capacity of a phosphonochalcogenide (PCH) to catalyze the stereoselective α-iminoglycosylation of iminoglycals with a wide array of glycosyl acceptors with remarkable protecting group tolerance. Mechanistic studies have illuminated the counterintuitive role of the catalyst in serially activating both the glycosyl donor and acceptor in the up/downstream stages of the reaction through chalcogen bonding (ChB). The dynamic interaction of chalcogens with substrates opens up new mechanistic opportunities based on iterative ChB catalyst engagement and disengagement in multiple elementary steps.
Collapse
Affiliation(s)
- Caiming Wang
- Abteilung
Chemische Biologie, Max Planck Institut
für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
- Fakultät
für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany
| | - Anna Krupp
- Anorganische
Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Carsten Strohmann
- Anorganische
Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227 Dortmund, Germany
| | - Bastian Grabe
- Fakultät
für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany
| | - Charles C. J. Loh
- Abteilung
Chemische Biologie, Max Planck Institut
für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227 Dortmund, Germany
- Fakultät
für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227 Dortmund, Germany
| |
Collapse
|
6
|
Guo H, Kirchhoff JL, Strohmann C, Grabe B, Loh CCJ. Exploiting π and Chalcogen Interactions for the β-Selective Glycosylation of Indoles through Glycal Conformational Distortion. Angew Chem Int Ed Engl 2024; 63:e202316667. [PMID: 38116860 DOI: 10.1002/anie.202316667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Harnessing unconventional noncovalent interactions (NCIs) is emerging as a formidable synthetic approach in difficult-to-access glycosidic chemical space. C-Glycosylation, in particular, has gained a flurry of recent attention. However, most reported methods are restricted to the relatively facile access to α-C-glycosides. Herein, we disclose a β-stereoselective glycosylation of indoles by employing a phosphonoselenide catalyst. The robustness of this protocol is exemplified by its amenability for reaction at both the indolyl C- and N- reactivity sites. In contrast to previous reports, in which the chalcogens were solely involved in Lewis acidic activation, our mechanistic investigation unraveled that the often neglected flanking aromatic substituents of phosphonoselenides can substantially contribute to catalysis by engaging in π-interactions. Computations and NMR spectroscopy indicated that the chalcogenic and aromatic components of the catalyst can be collectively exploited to foster conformational distortion of the glycal away from the usual half-chair to the boat conformation, which liberates the convex β-face for nucleophilic attack.
Collapse
Affiliation(s)
- Hao Guo
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Jan-Lukas Kirchhoff
- Fakultät für Chemie und Chemische Biologie, Anorganische Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Carsten Strohmann
- Fakultät für Chemie und Chemische Biologie, Anorganische Chemie, Technische Universität Dortmund, Otto-Hahn-Straße 6, 44227, Dortmund, Germany
| | - Bastian Grabe
- NMR Department, Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| | - Charles C J Loh
- Abteilung Chemische Biologie, Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Straße 11, 44227, Dortmund, Germany
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Straße 4a, 44227, Dortmund, Germany
| |
Collapse
|
7
|
Gorelik DJ, Desai SP, Jdanova S, Turner JA, Taylor MS. Transformations of carbohydrate derivatives enabled by photocatalysis and visible light photochemistry. Chem Sci 2024; 15:1204-1236. [PMID: 38274059 PMCID: PMC10806712 DOI: 10.1039/d3sc05400d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
This review article highlights the diverse ways in which recent developments in the areas of photocatalysis and visible light photochemistry are impacting synthetic carbohydrate chemistry. The major topics covered are photocatalytic glycosylations, generation of radicals at the anomeric position, transformations involving radical formation at non-anomeric positions, additions to glycals, processes initiated by photocatalytic hydrogen atom transfer from sugars, and functional group interconversions at OH and SH groups. Factors influencing stereo- and site-selectivity in these processes, along with mechanistic aspects, are discussed.
Collapse
Affiliation(s)
- Daniel J Gorelik
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Shrey P Desai
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Sofia Jdanova
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Julia A Turner
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| | - Mark S Taylor
- Department of Chemistry, University of Toronto 80 St. George St. Toronto ON M5S 3H6 Canada
| |
Collapse
|
8
|
Garreffi BP, Kwok RW, Marianski M, Bennett CS. Origins of Selectivity in Glycosylation Reactions with Saccharosamine Donors. Org Lett 2023; 25:8856-8860. [PMID: 38059593 PMCID: PMC11078471 DOI: 10.1021/acs.orglett.3c03607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
A combination of DFT calculations and experiments is used to describe how the selection of a promoter can control the stereochemical outcome of glycosylation reactions with the deoxy sugar saccharosamine. Depending on the promoter, either α- or β-linked reactive intermediates are formed. These studies show that differential modes of activation lead to the formation of distinct intermediates that undergo highly selective reactions through an SN2-like mechanism.
Collapse
Affiliation(s)
- Brian P Garreffi
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, Massachusetts 02155, United States
| | - Ryan W Kwok
- Department of Chemistry, Hunter College, The City University of New York, 695 Park Ave, New York, New York 10065, United States
- PhD Program in Chemistry, The Graduate Center, The City University of New York, 365 Fifth Ave, New York, New York 10028, United States
| | - Mateusz Marianski
- Department of Chemistry, Hunter College, The City University of New York, 695 Park Ave, New York, New York 10065, United States
- PhD Program in Chemistry, The Graduate Center, The City University of New York, 365 Fifth Ave, New York, New York 10028, United States
| | - Clay S Bennett
- Department of Chemistry, Tufts University, 62 Talbot Ave, Medford, Massachusetts 02155, United States
| |
Collapse
|
9
|
Zhang J, Luo ZX, Wu X, Gao CF, Wang PY, Chai JZ, Liu M, Ye XS, Xiong DC. Photosensitizer-free visible-light-promoted glycosylation enabled by 2-glycosyloxy tropone donors. Nat Commun 2023; 14:8025. [PMID: 38049421 PMCID: PMC10695961 DOI: 10.1038/s41467-023-43786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/19/2023] [Indexed: 12/06/2023] Open
Abstract
Photochemical glycosylation has attracted considerable attention in carbohydrate chemistry. However, to the best of our knowledge, visible-light-promoted glycosylation via photoactive glycosyl donor has not been reported. In the study, we report a photosensitizer-free visible-light-mediated glycosylation approach using a photoactive 2-glycosyloxy tropone as the donor. This glycosylation reaction proceeds at ambient temperature to give a wide range of O-glycosides or oligosaccharides with yields up to 99%. This method is further applied in the stereoselective preparation of various functional glycosyl phosphates/phosphosaccharides, the construction of N-glycosides/nucleosides, and the late-stage glycosylation of natural products or pharmaceuticals on gram scales, and the iterative synthesis of hexasaccharide. The protocol features uncomplicated conditions, operational simplicity, wide substrate scope (58 examples), excellent compatibility with functional groups, scalability of products (7 examples), and high yields. It provides an efficient glycosylation method for accessing O/N-glycosides and glycans.
Collapse
Affiliation(s)
- Jing Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Zhao-Xiang Luo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xia Wu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Chen-Fei Gao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Peng-Yu Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Jin-Ze Chai
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Miao Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - Xin-Shan Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China
| | - De-Cai Xiong
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road No. 38, Beijing, 100191, China.
- Ningbo Institute of Marine Medicine, Peking University, Ningbo, 315010, China.
| |
Collapse
|
10
|
Fuke K, Miura T. Visible-light-driven 1,2-hydro(cyanomethylation) of alkenes with chloroacetonitrile. Org Biomol Chem 2023; 21:8642-8645. [PMID: 37869787 DOI: 10.1039/d3ob01533e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
A regioselective 1,2-hydro(cyanomethylation) of unactivated aliphatic alkenes is reported. A cyanomethyl radical is generated from haloacetonitriles. This radical adds onto alkenes to form alkyl radicals, which undergo hydrogen atom transfer from thiol to produce one-carbon-extended nitriles. Furthermore, the alkyl radicals are applied to cascade cyclization.
Collapse
Affiliation(s)
- Keito Fuke
- Division of Applied Chemistry, Okayama University, Tsushimanaka, Okayama 700-8530, Japan.
| | - Tomoya Miura
- Division of Applied Chemistry, Okayama University, Tsushimanaka, Okayama 700-8530, Japan.
| |
Collapse
|
11
|
Carney N, Perry N, Garabedian J, Nagorny P. Development of α-Selective Glycosylation with l-Oleandral and Its Application to the Total Synthesis of Oleandrin. Org Lett 2023; 25:966-971. [PMID: 36739571 DOI: 10.1021/acs.orglett.2c04358] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This letter describes the development of an α-selective glycosylation using l-oleandrose, a 2-deoxysugar that is frequently found in natural products, and its application to the total synthesis of the natural cardiotonic steroids oleandrin and beaumontoside. To improve the reaction diastereoselectivity and to minimize side-product formation, an extensive evaluation and optimization of the conditions leading to α-selective glycosylation of digitoxigenin with l-oleandrose-based donors was conducted. These studies led to the exploration of 8 different phosphine·acid complexes or salts and yielded HBr·PPh3 as the optimal catalyst, which provided in the cleanest α-glycosylation and produced protected beaumontoside in 67% yield. Subsequent application of these conditions to synthetic oleandrigenin afforded the desired α-product in 69% isolated yield─enabling the completion of the first synthesis of oleandrin in 17 steps (1.2% yield) from testosterone.
Collapse
Affiliation(s)
- Nolan Carney
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Natasha Perry
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jacob Garabedian
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Pavel Nagorny
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
12
|
Zhang Y, Hu Y, Liu S, He H, Sun R, Lu G, Xiao G. Total synthesis of Lentinus giganteus glycans with antitumor activities via stereoselective α-glycosylation and orthogonal one-pot glycosylation strategies. Chem Sci 2022; 13:7755-7764. [PMID: 35865907 PMCID: PMC9258330 DOI: 10.1039/d2sc02176e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/26/2022] [Indexed: 12/23/2022] Open
Abstract
The accessibility to long, branched and complex glycans containing many 1,2-cis glycosidic linkages with precise structures remains a challenging task in chemical synthesis. Reported here is an efficient, stereoselective and orthogonal one-pot synthesis of a tetradecasaccharide and shorter sequences from Lentinus giganteus polysaccharides with antitumor activities. The synthetic strategy consists of: (1) newly developed merging reagent modulation and remote anchimeric assistance (RMRAA) α-(1→6)-galactosylation in a highly stereoselective manner, (2) DMF-modulated stereoselective α-(1→3)-glucosylation, (3) RMRAA stereoselective α-(1→6)-glucosylation, (4) several orthogonal one-pot glycosylations on the basis of N-phenyltrifluoroacetimidate (PTFAI) glycosylation, Yu glycosylation and ortho-(1-phenylvinyl)benzoate (PVB) glycosylation to streamline oligosaccharide synthesis, and (5) convergent [7 + 7] glycosylation for the final assembly of the target tetradecasaccharide. In particular, this new RMRAA α-galactosylation method has mild reaction conditions, broad substrate scopes and significantly shortened step counts for the heptasaccharide synthesis in comparison with 4,6-di-tert-butylsilyene (DTBS) directed α-galactosylation. Furthermore, DFT calculations shed light on the origins of remote anchimeric assistance effects (3,4-OBz > 3,4-OAc > 4-OBz > 3-OBz) of acyl groups.
Collapse
Affiliation(s)
- Yunqin Zhang
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Yanlei Hu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan Shandong 250100 China
| | - Shanshan Liu
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Haiqing He
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Roujing Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| | - Gang Lu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University Jinan Shandong 250100 China
| | - Guozhi Xiao
- State Key Laboratory of Phytochemistry and Plant Resources in West China Kunming Institute of Botany, University of Chinese Academy of Sciences, Chinese Academy of Sciences 132 Lanhei Road Kunming 650201 China
| |
Collapse
|