1
|
Zhou A, Sun Z, Sun L. Stable organic radical qubits and their applications in quantum information science. Innovation (N Y) 2024; 5:100662. [PMID: 39091459 PMCID: PMC11292369 DOI: 10.1016/j.xinn.2024.100662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/20/2024] [Indexed: 08/04/2024] Open
Abstract
The past century has witnessed the flourishing of organic radical chemistry. Stable organic radicals are highly valuable for quantum technologies thanks to their inherent room temperature quantum coherence, atomic-level designability, and fine tunability. In this comprehensive review, we highlight the potential of stable organic radicals as high-temperature qubits and explore their applications in quantum information science, which remain largely underexplored. Firstly, we summarize known spin dynamic properties of stable organic radicals and examine factors that influence their electron spin relaxation and decoherence times. This examination reveals their design principles and optimal operating conditions. We further discuss their integration in solid-state materials and surface structures, and present their state-of-the-art applications in quantum computing, quantum memory, and quantum sensing. Finally, we analyze the primary challenges associated with stable organic radical qubits and provide tentative insights to future research directions.
Collapse
Affiliation(s)
- Aimei Zhou
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Zhecheng Sun
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Lei Sun
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, Hangzhou 310030, China
| |
Collapse
|
2
|
Liu YC, Chen JX, Fu PX, Liao YQ, Wang YH, Wang YX, Liu Z, Gao S, Jiang SD. Electrically Induced Crystal Field Distortion in a Ferroelectric Perovskite Revealed by Electron Paramagnetic Resonance. J Am Chem Soc 2024; 146:19397-19404. [PMID: 38959221 DOI: 10.1021/jacs.4c05655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The magnetoelectric material has attracted multidisciplinary interest in the past decade for its potential to accommodate various functions. Especially, the external electric field can drive the quantum behaviors of such materials via the spin-electric coupling effect, with the advantages of high spatial resolution and low energy cost. In this work, the spin-electric coupling effect of Mn2+-doped ferroelectric organic-inorganic hybrid perovskite [(CH3)3NCH2Cl]CdCl3 with a large piezoelectric effect was investigated. The electric field manipulation efficiency for the allowed transitions was determined by the pulsed electron paramagnetic resonance. The orientation-included Hamiltonian of the spin-electric coupling effect was obtained via simulating the angle-dependent electric field modulated continuous-wave electron paramagnetic resonance. The results demonstrate that the applied electric field affects not only the principal values of the zero-field splitting tensor but also its principal axis directions. This work proposes and exemplifies a route to understand the spin-electric coupling effect originating from the crystal field imposed on a spin ion being modified by the applied electric field, which may guide the rational screening and designing of hybrid perovskite ferroelectrics that satisfy the efficiency requirement of electric field manipulation of spins in quantum information applications.
Collapse
Affiliation(s)
- You-Chao Liu
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou 511442, China
| | - Jia-Xin Chen
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou 511442, China
| | - Peng-Xiang Fu
- Beijing National Laboratory of Molecular Science, Beijing Key Laboratory of Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yi-Qiu Liao
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou 511442, China
| | - Yi-Han Wang
- Beijing National Laboratory of Molecular Science, Beijing Key Laboratory of Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ye-Xin Wang
- Quantum Science Center of Guangdong-Hong Kong-Macao Greater Bay Area, Shenzhen-Hong Kong International Science and Technology Park, No. 3 Binglang Road, Futian District, Shenzhen, Guangdong 518045, China
| | - Zheng Liu
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Song Gao
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou 511442, China
- Beijing National Laboratory of Molecular Science, Beijing Key Laboratory of Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, LIFM, School of Chemistry, IGCME, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shang-Da Jiang
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou 511442, China
| |
Collapse
|
3
|
Inoue M, Yamauchi A, Parmar B, Orihashi K, Singh M, Asada M, Nakamura T, Yanai N. Guest-responsive coherence time of radical qubits in a metal-organic framework. Chem Commun (Camb) 2024; 60:6130-6133. [PMID: 38770580 DOI: 10.1039/d4cc01564a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Metal-organic frameworks (MOFs) integrated with molecular qubits are promising for quantum sensing. In this study, a new UiO-type MOF with a 5,12-diazatetracene (DAT)-containing ligand is synthesized, and the radicals generated in the MOF exhibit high stability and a relatively long coherence time (T2) responsive to the introduction of various guest molecules.
Collapse
Affiliation(s)
- Miku Inoue
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Akio Yamauchi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Bhavesh Parmar
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Kana Orihashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Manpreet Singh
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Mizue Asada
- Institute for Molecular Science, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Japan
| | - Toshikazu Nakamura
- Institute for Molecular Science, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Japan
| | - Nobuhiro Yanai
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan.
- CREST, JST, Honcho 4-1-8, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
4
|
Zhang Y, Oberg CP, Hu Y, Xu H, Yan M, Scholes GD, Wang M. Molecular and Supramolecular Materials: From Light-Harvesting to Quantum Information Science and Technology. J Phys Chem Lett 2024:3294-3316. [PMID: 38497707 DOI: 10.1021/acs.jpclett.4c00264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
The past two decades have witnessed immense advances in quantum information technology (QIT), benefited by advances in physics, chemistry, biology, and materials science and engineering. It is intriguing to consider whether these diverse molecular and supramolecular structures and materials, partially inspired by quantum effects as observed in sophisticated biological systems such as light-harvesting complexes in photosynthesis and the magnetic compass of migratory birds, might play a role in future QIT. If so, how? Herein, we review materials and specify the relationship between structures and quantum properties, and we identify the challenges and limitations that have restricted the intersection of QIT and chemical materials. Examples are broken down into two categories: materials for quantum sensing where nonclassical function is observed on the molecular scale and systems where nonclassical phenomena are present due to intermolecular interactions. We discuss challenges for materials chemistry and make comparisons to related systems found in nature. We conclude that if chemical materials become relevant for QIT, they will enable quite new kinds of properties and functions.
Collapse
Affiliation(s)
- Yipeng Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Catrina P Oberg
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Yue Hu
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Hongxue Xu
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Mengwen Yan
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Gregory D Scholes
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Mingfeng Wang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| |
Collapse
|
5
|
Wilson CB, Qi M, Han S, Sherwin MS. Gadolinium Spin Decoherence Mechanisms at High Magnetic Fields. J Phys Chem Lett 2023; 14:10578-10584. [PMID: 37976425 PMCID: PMC10694812 DOI: 10.1021/acs.jpclett.3c01847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/19/2023]
Abstract
Favorable relaxation processes, high-field spectral properties, and biological compatibility have made spin-7/2 Gd3+-based spin labels an increasingly popular choice for protein structure studies using high-field electron paramagnetic resonance. However, high-field relaxation and decoherence in ensembles of half-integer high-spin systems, such as Gd3+, remain poorly understood. We report spin-lattice (T1) and phase memory (TM) relaxation times at 8.6 T (240 GHz), and we present the first comprehensive model of high-field, high-spin decoherence accounting for both the electron spin concentration and temperature. The model includes four principal mechanisms driving decoherence: energy-conserving electron spin flip-flops, direct "T1" spin-lattice relaxation-driven electron spin flip processes, indirect T1-driven flips of nearby electron spins, and nuclear spin flip-flops. Mechanistic insight into decoherence can inform the design of experiments making use of Gd3+ as spin probes or relaxivity agents and can be used to measure local average interspin distances as long as 17 nm.
Collapse
Affiliation(s)
- C. Blake Wilson
- Laboratory
of Chemical Physics, National Institute of Diabetes and Digestive
and Kidney Diseases, National Institutes
of Health, Bethesda, Maryland 20892, United States
| | - Mian Qi
- Faculty
of Chemistry and Center for Molecular Materials, Bielefeld University, 33615 Bielefeld, Germany
| | - Songi Han
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, Santa Barbara, California 93106, United States
- Department
of Chemical Engineering, University of California,
Santa Barbara, Santa
Barbara, California 93106, United States
- Institute
for Terahertz Science and Technology, University
of California, Santa Barbara, Santa
Barbara, California 93106, United States
| | - Mark S. Sherwin
- Institute
for Terahertz Science and Technology, University
of California, Santa Barbara, Santa
Barbara, California 93106, United States
- Department
of Physics, University of California, Santa
Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
6
|
Schäfter D, Wischnat J, Tesi L, De Sousa JA, Little E, McGuire J, Mas-Torrent M, Rovira C, Veciana J, Tuna F, Crivillers N, van Slageren J. Molecular One- and Two-Qubit Systems with Very Long Coherence Times. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302114. [PMID: 37289574 DOI: 10.1002/adma.202302114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/06/2023] [Indexed: 06/10/2023]
Abstract
General-purpose quantum computation and quantum simulation require multi-qubit architectures with precisely defined, robust interqubit interactions, coupled with local addressability. This is an unsolved challenge, primarily due to scalability issues. These issues often derive from poor control over interqubit interactions. Molecular systems are promising materials for the realization of large-scale quantum architectures, due to their high degree of positionability and the possibility to precisely tailor interqubit interactions. The simplest quantum architecture is the two-qubit system, with which quantum gate operations can be implemented. To be viable, a two-qubit system must possess long coherence times, the interqubit interaction must be well defined and the two qubits must also be addressable individually within the same quantum manipulation sequence. Here results are presented on the investigation of the spin dynamics of chlorinated triphenylmethyl organic radicals, in particular the perchlorotriphenylmethyl (PTM) radical, a mono-functionalized PTM, and a biradical PTM dimer. Extraordinarily long ensemble coherence times up to 148 µs are found at all temperatures below 100 K. Two-qubit and, importantly, individual qubit addressability in the biradical system are demonstrated. These results underline the potential of molecular materials for the development of quantum architectures.
Collapse
Affiliation(s)
- Dennis Schäfter
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Jonathan Wischnat
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Lorenzo Tesi
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - J Alejandro De Sousa
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, Bellaterra, 08193, Spain
- Laboratorio de Electroquímica, Departamento de Química, Facultad de Ciencias, Universidad de los Andes, Mérida, 5101, Venezuela
| | - Edmund Little
- Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Jake McGuire
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Marta Mas-Torrent
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, Bellaterra, 08193, Spain
| | - Concepció Rovira
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, Bellaterra, 08193, Spain
| | - Jaume Veciana
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, Bellaterra, 08193, Spain
| | - Floriana Tuna
- Department of Chemistry and Photon Science Institute, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Núria Crivillers
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN), Campus de la UAB, Bellaterra, 08193, Spain
| | - Joris van Slageren
- Institute of Physical Chemistry and Center for Integrated Quantum Science and Technology, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| |
Collapse
|
7
|
Fu PX, Zhou S, Liu Z, Wu CH, Fang YH, Wu ZR, Tao XQ, Yuan JY, Wang YX, Gao S, Jiang SD. Multiprocessing Quantum Computing through Hyperfine Couplings in Endohedral Fullerene Derivatives. Angew Chem Int Ed Engl 2022; 61:e202212939. [PMID: 36310119 DOI: 10.1002/anie.202212939] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Indexed: 11/06/2022]
Abstract
Magnetic molecules have shown great potential in quantum information processing due to the chemical tunablity of their quantum behaviors. Chemical derivatives of endohedral nitrogen fullerenes with long coherence time and rich energy levels were synthesized and studied to demonstrate the ability of multiprocessing in quantum information using electron magnetic resonance. After initialization of the 12-levelled spin system, subgroups of spin energy levels coursed by the hyperfine couplings can be selectively manipulated. The cooperatively combining of the parallel calculations enabled quantum error correction, increasing the correct rate by up to 17.82 %. Also, different subgroups of transitions divided by hyperfine coupling can be treated as independent qubits, and multi-task quantum computing were realized by performing Z-gate and X-gate simultaneously, which accelerates the overall gating speed.
Collapse
Affiliation(s)
- Peng-Xiang Fu
- Beijing National Laboratory of Molecular Science, Beijing Key Laboratory of Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Shen Zhou
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou, China.,Institute for Quantum Information Science and technology, College of Science, National University of Defense Technology, Changsha, China
| | - Zheng Liu
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou, China
| | - Cong-Hui Wu
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou, China
| | - Yu-Hui Fang
- Beijing National Laboratory of Molecular Science, Beijing Key Laboratory of Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Zhi-Rong Wu
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou, China
| | - Xing-Quan Tao
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou, China
| | - Jia-Yue Yuan
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou, China.,Institute for Quantum Information Science and technology, College of Science, National University of Defense Technology, Changsha, China
| | - Ye-Xin Wang
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou, China
| | - Song Gao
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou, China.,Beijing National Laboratory of Molecular Science, Beijing Key Laboratory of Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Shang-Da Jiang
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou, China
| |
Collapse
|
8
|
Fang YH, Liu Z, Zhou S, Fu PX, Wang YX, Wang ZY, Wang ZM, Gao S, Jiang SD. Spin-Electric Coupling with Anisotropy-Induced Vanishment and Enhancement in Molecular Ferroelectrics. J Am Chem Soc 2022; 144:8605-8612. [PMID: 35512343 DOI: 10.1021/jacs.2c00484] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Manipulating quantum properties by electric fields using spin-electric coupling (SEC) effects promises spatial addressability. While several studies about inorganic materials showing the SEC functionality have been reported, the vastly tunable crystal structures of molecular ferroelectrics provide a range of rationally designable materials yet to be exploited. In this work, Mn2+-doped molecular ferroelectrics are chosen to experimentally demonstrate the feasibility of achieving the quantum coherent SEC effect in molecular ferroelectrics for the first time. The electric field pulse applied between Hahn-echo pulses in electron paramagnetic resonance (EPR) experiments causes controllable phase shifts via manipulating of the zero-field splitting (ZFS) of the Mn(II) ions. Detailed investigations of the aMn crystal showed unexpected SEC vanishment and enhancement at different crystal orientations, which were elucidated by studying the spin Hamiltonian and magnetic anisotropy. With the enhanced SEC efficiency being achieved (0.68 Hz m/V), this work discovers an emerging material library of molecular ferroelectrics to implement coherent quantum control with selective and tunable SEC effects toward highly scalable quantum gates.
Collapse
Affiliation(s)
- Yu-Hui Fang
- Beijing National Laboratory of Molecular Science, Beijing Key Laboratory of Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zheng Liu
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou 510641, China
| | - Shen Zhou
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou 510641, China.,College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
| | - Peng-Xiang Fu
- Beijing National Laboratory of Molecular Science, Beijing Key Laboratory of Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ye-Xin Wang
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou 510641, China
| | - Zi-Yu Wang
- Beijing National Laboratory of Molecular Science, Beijing Key Laboratory of Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhe-Ming Wang
- Beijing National Laboratory of Molecular Science, Beijing Key Laboratory of Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Song Gao
- Beijing National Laboratory of Molecular Science, Beijing Key Laboratory of Magnetoelectric Materials and Devices, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.,Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou 510641, China
| | - Shang-Da Jiang
- Spin-X Institute, School of Chemistry and Chemical Engineering, State Key Laboratory of Luminescent Materials and Devices, Guangdong-Hong Kong-Macao Joint Laboratory of Optoelectronic and Magnetic Functional Materials, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|