1
|
Shen L, Zhang X, He H, Fan X, Peng W, Li Y. Template-Assisted in situ synthesis of superaerophobic bimetallic MOF composites with tunable morphology for boosted oxygen evolution reaction. J Colloid Interface Sci 2024; 676:238-248. [PMID: 39029250 DOI: 10.1016/j.jcis.2024.07.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/28/2024] [Accepted: 07/07/2024] [Indexed: 07/21/2024]
Abstract
CoFe bimetallic organic frameworks (CoFe-MOFs) with tunable morphology and electronic structure are synthesized in situ utilizing cobalt hydroxide (Co(OH)2) as a semi-sacrificial template and different anionic iron salts as modifying factors in a non-calcined synthesis method. This work defines the impact of three different anionic metallic iron salts (FeCl3, Fe(NO3)3, and Fe2(SO4)3) on the morphology of MOF materials and their resulting oxygen evolution reaction (OER) catalytic activity. Employing ferric chloride (FeCl3) as the metallic iron source, heterostructured electrocatalysts (BN-CoFe-MOF) with nanoparticles decorated nanoneedle tips are obtained, exhibiting a low overpotential (230 mV at 10 mA cm-2) and a Tafel slope of 105.6 mV dec-1 in 1.0 M KOH. It also demonstrates long time stability for at least 50 h at a current density of 10 mA cm-2. The investigation uncovers that the splendid OER activity and stability of the BN-CoFe-MOF heterojunction can be attributed to its large specific surface area, desirable mesoporous structure, superaerophobic characteristic, and high exposure of active centers. This work not only provides an efficient and cost-effective MOF based OER electrocatalyst but also serves as a valuable reference for future research on morphology control and strategies to enhance the OER activity of MOF catalysts.
Collapse
Affiliation(s)
- Luping Shen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China
| | - Xingjin Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China
| | - Hongwei He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China; Institute of Shaoxing Tianjin University, Zhejiang 312300, PR China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China; Institute of Shaoxing Tianjin University, Zhejiang 312300, PR China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300354, PR China; Institute of Shaoxing Tianjin University, Zhejiang 312300, PR China.
| |
Collapse
|
2
|
Xu L, Zheng L, Xu Y, Hao C, Hu X, Wang Y. Reinforced interfacial coupling effect of NiO/Ni 2P by Fe doping for boosting water splitting. J Colloid Interface Sci 2024; 679:109-118. [PMID: 39357221 DOI: 10.1016/j.jcis.2024.09.238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Nickel-based catalysts are suitable for water splitting to generate hydrogen. However, the low conductivity and weak stability have always been urgent issues to be addressed in nickel-based catalysts. Fe-doped nickel oxide/nickel phosphide (Fe-NiO/Ni2P) was prepared as a bifunctional electrocatalyst by doping metal and constructing heterogeneous interface. The introduction of Fe contributed to the reinforced interfacial coupling effect of NiO/Ni2P to promote charge transfer and accelerate reaction kinetics. The heterojunction regulated the interfacial charge density between NiO and Ni2P to improve the electronic environment of Ni2+ and enhance conductivity. The O-Fe-P bond at the heterogeneous interface induced the directional transfer of electrons and ensured the structure stability. The synergistic effect of Fe doping and heterogeneous interface increased the adsorption energy of *O and coordinated the adsorption energy of *H, advancing the catalytic performance. Fe-NiO/Ni2P exhibited the overpotential of 242 mV and 141 mV at 10 mA cm-2 for oxygen and hydrogen evolution, respectively.
Collapse
Affiliation(s)
- Lin Xu
- Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Yangtze River Delta Carbon Neutrality Strategy Development Institute, Southeast University, Nanjing 210096, China
| | - Lei Zheng
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Yixue Xu
- Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Yangtze River Delta Carbon Neutrality Strategy Development Institute, Southeast University, Nanjing 210096, China
| | - Chenyang Hao
- Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Yangtze River Delta Carbon Neutrality Strategy Development Institute, Southeast University, Nanjing 210096, China
| | - Xuemin Hu
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China.
| | - Yuqiao Wang
- Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Yangtze River Delta Carbon Neutrality Strategy Development Institute, Southeast University, Nanjing 210096, China.
| |
Collapse
|
3
|
Ma T, Yan R, Wu X, Wang M, Yin B, Li S, Cheng C, Thomas A. Polyoxometalate-Structured Materials: Molecular Fundamentals and Electrocatalytic Roles in Energy Conversion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310283. [PMID: 38193756 DOI: 10.1002/adma.202310283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Polyoxometalates (POMs), a kind of molecular metal oxide cluster with unique physical-chemical properties, have made essential contributions to creating efficient and robust electrocatalysts in renewable energy systems. Due to the fundamental advantages of POMs, such as the diversity of molecular structures and large numbers of redox active sites, numerous efforts have been devoted to extending their application areas. Up to now, various strategies of assembling POM molecules into superstructures, supporting POMs on heterogeneous substrates, and POMs-derived metal compounds have been developed for synthesizing electrocatalysts. From a multidisciplinary perspective, the latest advances in creating POM-structured materials with a unique focus on their molecular fundamentals, electrocatalytic roles, and the recent breakthroughs of POMs and POM-derived electrocatalysts, are systematically summarized. Notably, this paper focuses on exposing the current states, essences, and mechanisms of how POM-structured materials influence their electrocatalytic activities and discloses the critical requirements for future developments. The future challenges, objectives, comparisons, and perspectives for creating POM-structured materials are also systematically discussed. It is anticipated that this review will offer a substantial impact on stimulating interdisciplinary efforts for the prosperities and widespread utilizations of POM-structured materials in electrocatalysis.
Collapse
Affiliation(s)
- Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Rui Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xizheng Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mao Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117576, Singapore
| | - Bo Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Arne Thomas
- Department of Chemistry, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| |
Collapse
|
4
|
Lakhan MN, Hanan A, Wang Y, Liu S, Arandiyan H. Recent Progress on Nickel- and Iron-Based Metallic Organic Frameworks for Oxygen Evolution Reaction: A Review. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:2465-2486. [PMID: 38265034 DOI: 10.1021/acs.langmuir.3c03558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Developing sustainable energy solutions to safeguard the environment is a critical ongoing demand. Electrochemical water splitting (EWS) is a green approach to create effective and long-lasting electrocatalysts for the water oxidation process. Metal organic frameworks (MOFs) have become commonly utilized materials in recent years because of their distinguishing pore architectures, metal nodes easy accessibility, large specific surface areas, shape, and adaptable function. This review outlines the most significant developments in current work on developing improved MOFs for enhancing EWS. The benefits and drawbacks of MOFs are first discussed in this review. Then, some cutting-edge methods for successfully modifying MOFs are also highlighted. Recent progress on nickel (Ni) and iron (Fe) based MOFs have been critically discussed. Finally, a comprehensive analysis of the existing challenges and prospects for Ni- and Fe-based MOFs are summarized.
Collapse
Affiliation(s)
- Muhammad Nazim Lakhan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
| | - Abdul Hanan
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, Selangor 47500, Malaysia
| | - Yuan Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Shaomin Liu
- School of Advanced Engineering, Great Bay University, Dongguan 523000, China
| | - Hamidreza Arandiyan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, VIC 3000, Australia
- Centre for Applied Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3000, Australia
| |
Collapse
|
5
|
Xiong D, He X, Liu X, Gong S, Xu C, Tu Z, Wu D, Wang J, Chen Z. 1D/3D Heterogeneous Assembling Body of Cobalt Nitrides for Highly Efficient Overall Hydrazine Splitting and Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306100. [PMID: 37817367 DOI: 10.1002/smll.202306100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/27/2023] [Indexed: 10/12/2023]
Abstract
Herein, the construction of a heterostructured 1D/3D CoN-Co2 N@NF (nickel foam) electrode used for thermodynamically favorable hydrazine oxidation reaction (HzOR), as an alternative to sluggish anodic oxygen evolution reaction (OER) in water splitting for hydrogen production, is reported. The electrode exhibits remarkable catalytic activities, with an onset potential of -0.11 V in HzOR and -71 mV for a current density of 10 mA cm-2 in hydrogen evolution reaction (HER). Consequently, an extraordinary low cell voltage of 53 mV is required to achieve 10 mA cm-2 for overall hydrazine splitting in a two-electrode system, demonstrating significant energy-saving advantages over conventional water splitting. The HzOR proceeds through the 4e- reaction pathway to release N2 while the 1e- pathway to emit NH3 is uncompetitive, as evidenced by differential electrochemical mass spectrometric measurements. The X-ray absorption spectroscopy, in situ Raman spectroscopy, and theoretical calculations identify cobalt nitrides rather than corresponding oxides/(oxy)hydroxides as catalytic species for HzOR and illustrate advantages of heterostructured CoN-Co2 N in optimizing adsorption energies of intermediates/reagents and promoting catalytic activities toward both HzOR and HER. The CoN-Co2 N@NF is also an excellent supercapacitive material, exhibiting an increased specific capacity (938 F g-1 at 1 A g-1 ) with excellent cycling stability (95.8%, 5000 cycles).
Collapse
Affiliation(s)
- Dengke Xiong
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xiaoyang He
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Xuan Liu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Shuaiqi Gong
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Chen Xu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zhentao Tu
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Jianying Wang
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zuofeng Chen
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| |
Collapse
|
6
|
Huang H, Geng W, Wu X, Zhang Y, Xie L, Ma T, Cheng C. Spiky Artificial Peroxidases with V-O-Fe Pair Sites for Combating Antibiotic-Resistant Pathogens. Angew Chem Int Ed Engl 2024; 63:e202310811. [PMID: 37953675 DOI: 10.1002/anie.202310811] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/14/2023]
Abstract
With the sharp rise of antibiotic-resistant pathogens worldwide, it is of enormous importance to create new strategies for combating pathogenic bacteria. Here, we create an iron oxide-based spiky artificial peroxidase (POD) with V-O-Fe pair sites (V-Fe2 O3 ) for combating methicillin-resistant Staphylococcus aureus (MRSA). The experimental studies and theoretical calculations demonstrate that the V-Fe2 O3 can achieve the localized "capture and killing" bifunction from the spiky morphology and massive reactive oxygen species (ROS) production. The V-Fe2 O3 can reach nearly 100 % bacterial inhibition over a long period by efficiently oxidizing the lipid membrane. Our wound disinfection results identify that the V-Fe2 O3 can not only efficiently eliminate MRSA and their biofilm but also accelerate wound recovery without causing noticeable inflammation and toxicity. This work offers essential insights into the critical roles of V-O-Fe pair sites and localized "capture and killing" in biocatalytic disinfection and provides a promising pathway for the de novo design of efficient artificial peroxidases.
Collapse
Affiliation(s)
- Haoju Huang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Wei Geng
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xizheng Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yiyun Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Lan Xie
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
7
|
Ju S, Liu Y, Pei M, Shuai Y, Zhai Z, Yan W, Wang YJ, Zhang J. Amorphization-induced abundant coordinatively unsaturated Ni active sites in NiCo(OH) 2 for boosting catalytic OER and HER activities at high current densities for water-electrolysis. J Colloid Interface Sci 2024; 653:1704-1714. [PMID: 37820501 DOI: 10.1016/j.jcis.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/26/2023] [Accepted: 10/01/2023] [Indexed: 10/13/2023]
Abstract
The large overpotential required for oxygen evolution reaction (OER) is one of the major factors limiting the efficiency of electrochemical water-electrolysis for hydrogen production. In this work, to decrease OER energy barrier and obtain low overpotential, amorphous-crystalline NiCo(OH)2 nanoplates are in-situ grown on nickel foam surface to form a catalyst-based electrode (ac-NiCo(OH)2/NF) for water-electrolysis application. As the inner amorphization of NiCo(OH)2 results in increased electron density of the metal sites, leading to the formation of tensile Ni-O bond, the coordinatively unsaturated Ni sites in the down-shift d-band centers toward Fermi level can lower the antibonding states. This can lead to optimized adsorption and desorption energies for oxygen-containing intermediates for OER. As expected, the prepared ac-NiCo(OH)2/NF electrode presents a low overpotential of 364 mV to deliver 1000 mA cm-2 toward OER with impressively high robust stability. When this electrocatalyst electrode serves as both the anode and cathode, the assembled anion exchange membrane (AEM) electrolyser only needs a cell voltage of 1.68 V to drive the overall water-electrolysis process at a current density of 10 mA cm-2.
Collapse
Affiliation(s)
- Shang Ju
- Institute for New Energy Materials and Engineering/College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yao Liu
- Institute for New Energy Materials and Engineering/College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Maojun Pei
- Institute for New Energy Materials and Engineering/College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yankang Shuai
- Institute for New Energy Materials and Engineering/College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zibo Zhai
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China; Institute for New Energy Materials and Engineering/College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Wei Yan
- Institute for New Energy Materials and Engineering/College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| | - Yan-Jie Wang
- School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, Guangdong, China.
| | - Jiujun Zhang
- Institute for New Energy Materials and Engineering/College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
8
|
Lin R, Mao L, Ding Y, Qian J. Controllable fabrication of iron-nickel alloy embedded in nitrogen-doped carbon for oxygen evolution. Chem Commun (Camb) 2023; 59:12875-12878. [PMID: 37818592 DOI: 10.1039/d3cc04474b] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Nickel-based electrocatalysts for the oxygen evolution reaction (OER) show the disadvantages of low activity and poor stability. In this paper, an FeNi alloy is wrapped by an amino-modified MOF-5-derived N-doped carbon layer to address these problems. Additionally, the improvement resulting from Fe doping of NiOOH catalysts is theoretically supported.
Collapse
Affiliation(s)
- Rong Lin
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China.
| | - Lujiao Mao
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China.
| | - Yi Ding
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China.
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China.
| |
Collapse
|
9
|
Lyu C, Li Y, Cheng J, Yang Y, Wu K, Wu J, Wang H, Lau WM, Tian Z, Wang N, Zheng J. Dual Atoms (Fe, F) Co-Doping Inducing Electronic Structure Modulation of NiO Hollow Flower-Spheres for Enhanced Oxygen Evolution/Sulfion Oxidation Reaction Performance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302055. [PMID: 37222116 DOI: 10.1002/smll.202302055] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/30/2023] [Indexed: 05/25/2023]
Abstract
Heteroatoms Fe, F co-doped NiO hollow spheres (Fe, F-NiO) are designed, which simultaneously integrate promoted thermodynamics by electronic structure modulation with boosted reaction kinetics by nano-architectonics. Benefiting from the electronic structure co-regulation of Ni sites by introducing Fe and F atoms in NiO , as the rate-determined step (RDS), the Gibbs free energy of OH* intermediates (ΔGOH* ) for Fe, F-NiO catalyst is significantly decreased to 1.87 eV for oxygen evolution reaction (OER) compared with pristine NiO (2.23 eV), which reduces the energy barrier and improves the reaction activity. Besides, densities of states (DOS) result verifies the bandgap of Fe, F-NiO(100) is significantly decreased compared with pristine NiO(100), which is beneficial to promote electrons transfer efficiency in electrochemical system. Profiting by the synergistic effect, the Fe, F-NiO hollow spheres only require the overpotential of 215 mV for OER at 10 mA cm-2 and extraordinary durability under alkaline condition. The assembled Fe, F-NiO||Fe-Ni2 P system only needs 1.51 V to reach 10 mA cm-2 , also exhibits outstanding electrocatalytic durability for continuous operation. More importantly, replacing the sluggish OER by advanced sulfion oxidation reaction (SOR) not only can realize the energy saving H2 production and toxic substances degradation, but also bring additional economic benefits.
Collapse
Affiliation(s)
- Chaojie Lyu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yanle Li
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Jiarun Cheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yuquan Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Kaili Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Jiwen Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Huichao Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Woon-Ming Lau
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong, 528399, P. R. China
| | - Ziqi Tian
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, P. R. China
| | - Ning Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Jinlong Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong, 528399, P. R. China
| |
Collapse
|
10
|
Yang C, Wu Z, Zhao Z, Gao Y, Ma T, Luo X, Cheng C, Wang Y, Li S, Zhao C. Mn-Oxygen Compounds Coordinated Ruthenium Sites with Deprotonated and Low Oxophilic Microenvironments for Membrane Electrolyzer-Based H 2 -Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303331. [PMID: 37295069 DOI: 10.1002/adma.202303331] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/29/2023] [Indexed: 06/12/2023]
Abstract
Among the platinum-group metals, ruthenium (Ru), with a low water dissociation energy, is considered a promising alternative to substitute Pt for catalyzing hydrogen evolution reaction (HER). However, optimizing the adsorption-desorption energies of H* and OH* intermediates on Ru catalytic sites is extremely desirable but remains challenging. Inspired by the natural catalytic characteristics of Mn-oxygen complex, this study reports to design Mn-oxygen compounds coordinated Ru sites (MOC-Ru) with deprotonated and low oxophilic microenvironments for modulating the adsorption-desorption of H* and OH* to promote HER kinetics. Benefiting from the unique advantages of MOC structures, including weakened HOH bond at interface, electron donation ability, and deprotonation capability, the MOC-Ru exhibits extremely low overpotential and ultralong stability in both acidic and alkaline electrolytes. Experimental observations and theoretical calculations elucidate that the MOC can accelerate water dissociation kinetics and promote OH* desorption in alkaline conditions and trigger the long-range H* spillover for H2 -release in acid conditions. The outstanding activity and stability of membrane electrolyzer display that the MOC-Ru catalyst holds great potential as cathode for H2 -production. This study provides essential insights into the crucial roles of deprotonated and low oxophilic microenvironments in HER catalysis and offers a new pathway to create an efficient water-splitting cathode.
Collapse
Affiliation(s)
- Chengdong Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zihe Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhenyang Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yun Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yi Wang
- Center for Microscopy and Analysis, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Chemistry, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
11
|
Chen Z, Fan Q, Zhou J, Wang X, Huang M, Jiang H, Cölfen H. Toward Understanding the Formation Mechanism and OER Catalytic Mechanism of Hydroxides by In Situ and Operando Techniques. Angew Chem Int Ed Engl 2023:e202309293. [PMID: 37650657 DOI: 10.1002/anie.202309293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 09/01/2023]
Abstract
Developing efficient and affordable electrocatalysts for the sluggish oxygen evolution reaction (OER) remains a significant barrier that needs to be overcome for the practical applications of hydrogen production via water electrolysis, transforming CO2 to value-added chemicals, and metal-air batteries. Recently, hydroxides have shown promise as electrocatalysts for OER. In situ or operando techniques are particularly indispensable for monitoring the key intermediates together with understanding the reaction process, which is extremely important for revealing the formation/OER catalytic mechanism of hydroxides and preparing cost-effective electrocatalysts for OER. However, there is a lack of comprehensive discussion on the current status and challenges of studying these mechanisms using in situ or operando techniques, which hinders our ability to identify and address the obstacles present in this field. This review offers an overview of in situ or operando techniques, outlining their capabilities, advantages, and disadvantages. Recent findings related to the formation mechanism and OER catalytic mechanism of hydroxides revealed by in situ or operando techniques are also discussed in detail. Additionally, some current challenges in this field are concluded and appropriate solution strategies are provided.
Collapse
Affiliation(s)
- Zongkun Chen
- University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
- Current address: Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470, Mülheim an der, Ruhr, Germany
| | - Qiqi Fan
- University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Jian Zhou
- University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| | - Xingkun Wang
- Laboratory of Functional Membrane Material and Membrane Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, P. R. China
| | - Minghua Huang
- School of Materials Science and Engineering, Ocean University of China, 266100, Qingdao, P. R. China
| | - Heqing Jiang
- Laboratory of Functional Membrane Material and Membrane Technology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 266101, Qingdao, P. R. China
| | - Helmut Cölfen
- University of Konstanz, Universitätsstraße 10, 78457, Konstanz, Germany
| |
Collapse
|
12
|
Wang WB, Cao HJ, Li GL. In Situ Charge Modification within Prussian Blue Analogue Nanocubes by Plasma for Oxygen Evolution Catalysis. Inorg Chem 2023. [PMID: 37339011 DOI: 10.1021/acs.inorgchem.3c00999] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
A targeted defect-induced strategy of metal sites in a porous framework is an efficient avenue to improve the performance of a catalyst. However, achieving such an activation without destroying the ordered framework is a major challenge. Herein, a dielectric barrier discharge plasma can etch the Fe(CN)6 group of the NiFe Prussian blue analogue framework in situ through reactive oxygen species generated in the air. Density functional theory calculations prove that the changed local electronic structure and coordination environment of Fe sites can significantly improve oxygen evolution reaction catalytic properties. The modified NiFe Prussian blue analogue is featured for only 316 mV at a high current density (100 mA cm-2), which is comparable to that of commercial alkaline catalysts. In a solar cell-driven alkaline electrolyzer, the overall electrolysis efficiency is up to 64% under real operation conditions. Over 80 h long-time continuous test under 100 mA cm-2 highlights superior durability. The density functional theory calculations confirm that the formation of OOH* is the rate-determining step over Fe sites, and Fe(CN)6 vacancy and extra oxygen atoms can introduce charge redistribution to the catalyst surface, which finally enhances the oxygen evolution reaction catalytic properties by reducing the overpotential by 0.10 V. Both experimental and theoretical results suggest that plasma treatment strategy is useful for modifying the skeletal material nondestructively at room temperature, which opens up a broad prospect in the field of catalyst production.
Collapse
Affiliation(s)
- Wen-Bin Wang
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Hai-Jie Cao
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Guo-Ling Li
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Qingdao 266071, China
| |
Collapse
|
13
|
Guo Y, Yan G, Sun X, Wang S, Chen L, Feng Y. "d-electron interactions" induced CoV 2O 6-Fe-NF for efficient oxygen evolution reaction. RSC Adv 2023; 13:18488-18495. [PMID: 37346941 PMCID: PMC10280129 DOI: 10.1039/d3ra02830e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/12/2023] [Indexed: 06/23/2023] Open
Abstract
The investigation of cost-effective, highly efficient, and environmentally friendly non-noble-metal-based electrocatalysts is imperative for oxygen evolution reactions (OER). Herein, CoV2O6 grown on nickel foam (NF) was selected as the fundamental material, and Fe2+ is introduced through a simple Fe3+ immersion treatment to synthesize CoV2O6-Fe-NF. Fe2+ is transformed into high oxidation state Fe(2+δ)+ due to interactions between the 3d electrons of transition metals. In situ Raman spectroscopy analysis reveals the specific process of OER in the presence of Fe(2+δ)+. Being in a higher oxidation state, Fe(2+δ)+ provides more active sites, which is beneficial for the reaction between water molecules and the reactive sites of the electrocatalyst, ultimately enhancing the accelerated OER process. CoV2O6-Fe-NF exhibited an overpotential of only 298 mV at 100 mA cm-2 in 1 M KOH electrolyte, which is lower than that of CoV2O6-NF (348 mV), as well as the comparative samples: Fe-NF (390 mV) and NF (570 mV). The exploration of high performance, triggered synergistically by the cooperative effect of transition metal 3d electrons, provides insights into the design of transition metal electrocatalysts for highly efficient OER.
Collapse
Affiliation(s)
- Yuchao Guo
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology Tianjin 300400 P. R. China
| | - Gaojie Yan
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology Tianjin 300400 P. R. China
| | - Xi Sun
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology Tianjin 300400 P. R. China
| | - Shuo Wang
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology Tianjin 300400 P. R. China
| | - Li Chen
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology Tianjin 300400 P. R. China
| | - Yi Feng
- Hebei Key Laboratory of Functional Polymers, Department of Polymer Materials and Engineering, Hebei University of Technology Tianjin 300400 P. R. China
| |
Collapse
|
14
|
Yang X, Wu Z, Xing Z, Yang C, Wang W, Yan R, Cheng C, Ma T, Zeng Z, Li S, Zhao C. IrPd Nanoalloy-Structured Bifunctional Electrocatalyst for Efficient and pH-Universal Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2208261. [PMID: 37012603 DOI: 10.1002/smll.202208261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/05/2023] [Indexed: 06/19/2023]
Abstract
The lack of high efficiency and pH-universal bifunctional electrocatalysts for water splitting to hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) hinders the large-scale production of green hydrogen. Here, an IrPd electrocatalyst supported on ketjenblack that exhibits outstanding bifunctional performance for both HER and OER at wide pH conditions is presented. The optimized IrPd catalyst exhibits a specific activity of 4.46 and 3.98 A mgIr -1 in the overpotential of 100 and 370 mV for HER and OER, respectively, in alkaline conditions. When applied to the anion exchange membrane electrolyzer, the Ir44 Pd56 /KB catalyst shows a stability of >20 h at a current of 250 mA cm-2 for water decomposition, indicating promising prospects for practical applications. Beyond offering an advanced electrocatalyst, this work also guides the rational design of desirable bifunctional electrocatalysts for HER and OER by regulating the microenvironments and electronic structures of metal catalytic sites for diverse catalysis.
Collapse
Affiliation(s)
- Xing Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zihe Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhenyu Xing
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Chengdong Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Weiwen Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Rui Yan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, P. R. China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
15
|
Wang Y, Fan X, Du Q, Shang Y, Li X, Cao Z, Wang X, Li J, Xie Y, Gan W. Magnetic Heating Amorphous NiFe Hydroxide Nanosheets Encapsulated Ni Nanoparticles@Wood Carbon to Boost Oxygen Evolution Reaction Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2206798. [PMID: 37010010 DOI: 10.1002/smll.202206798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/08/2023] [Indexed: 06/19/2023]
Abstract
The oxygen evolution reaction (OER) has significant effects on the water-splitting process and rechargeable metal-air batteries; however, the sluggish reaction kinetics caused by the four-electron transfer process for transition metal catalysts hinder large-scale commercialization in highly efficient electrochemical energy conversion devices. Herein, a magnetic heating-assisted enhancement design for low-cost carbonized wood with high OER activity is proposed, in which Ni nanoparticles are encapsulated in amorphous NiFe hydroxide nanosheets (a-NiFe@Ni-CW) via direct calcination and electroplating. The introduction of amorphous NiFe hydroxide nanosheets optimizes the electronic structure of a-NiFe@Ni-CW, accelerating electron transfer and reducing the energy barrier in the OER. More importantly, the Ni nanoparticles located on carbonized wood can function as magnetic heating centers under the effect of an alternating current (AC) magnetic field, further promoting the adsorption of reaction intermediates. Consequently, a-NiFe@Ni-CW demonstrated an overpotential of 268 mV at 100 mA cm-2 for the OER under an AC magnetic field, which is superior to that of most reported transition metal catalysts. Starting with sustainable and abundant wood, this work provides a reference for highly effective and low-cost electrocatalyst design with the assistance of a magnetic field.
Collapse
Affiliation(s)
- Yaoxing Wang
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, 150040, China
| | - Xueqin Fan
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, 150040, China
| | - Qiuyu Du
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, 150040, China
| | - Ying Shang
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, 150040, China
| | - Xueqi Li
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, 150040, China
| | - Zhifeng Cao
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, 150040, China
| | - Xuan Wang
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, 150040, China
| | - Jian Li
- Engineering Research Center of Advanced Wooden Materials (Ministry of Education), Northeast Forestry University, Harbin, 150040, China
| | - Yanjun Xie
- Engineering Research Center of Advanced Wooden Materials (Ministry of Education), Northeast Forestry University, Harbin, 150040, China
| | - Wentao Gan
- Key Laboratory of Bio-based Material Science & Technology (Ministry of Education), Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
16
|
Dong H, Zhao Z, Wu Z, Cheng C, Luo X, Li S, Ma T. Metal-oxo Cluster Mediated Atomic Rh with High Accessibility for Efficient Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207527. [PMID: 36651013 DOI: 10.1002/smll.202207527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Achieving single-atom catalysts (SACs) with high metal content and outstanding performance as well as robust stability is critically needed for clean and sustainable energy. However, most of the synthesized SACs are undesired on the loading content of the metal due to the anchored metals and the supports as well as the synthesizing methods. Herein, a Rh-SAC with high accessibility by loading it on the metal nodes of metal-porphyrin-based PCN MOFs (PCN-224) as supporting material is reported. Significantly, the PCN-Rh15.9 /KB catalyst with a high Rh content of 15.9 wt% exhibits excellent hydrogen evolution activity with a low overpotential of 25 mV at a current density of 10 mA cm-2 and a mass activity of 7.7 A mg-1 Rh at overpotential of 150 mV, which is much better than that of the commercial Rh/C. Various characterizations reveal the Rh species is stabilized by the metal nodes bearing -O/OHx in MOFs, which is of importance for the high loading amount and the good activity. This work establishes an efficient approach to synthesize high content SACs on the nodes of MOFs for wide catalyst design.
Collapse
Affiliation(s)
- Hai Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhenyang Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zihe Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Ultrasound, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
17
|
Yang C, Wu Z, Zhao Z, Gao Y, Ma T, He C, Wu C, Liu X, Luo X, Li S, Cheng C, Zhao C. Electronic Structure-Dependent Water-Dissociation Pathways of Ruthenium-Based Catalysts in Alkaline H 2 -Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206949. [PMID: 36599619 DOI: 10.1002/smll.202206949] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/14/2022] [Indexed: 06/17/2023]
Abstract
Ruthenium (Ru)-based catalysts have displayed compelling hydrogen evolution activities, which hold the promising potential to substitute platinum in alkaline H2 -evolution. In the challenging alkaline electrolytes, the water-dissociation process involves multistep reactions, while the profound origin and intrinsic factors of diverse Ru species on water-dissociation pathways and reaction principles remain ambiguous. Here the fundamental origin of water-dissociation pathways of Ru-based catalysts in alkaline media to be from their unique electronic structures in complex coordination environments are disclosed. These theoretical results validate that the modulated electronic structures with delocalization-localization coexistence at their boundaries between the Ru nanocluster and single-atom site have a profound influence on water-dissociation pathways, which push H2 O* migration and binding orientation during the splitting process, thus enhancing the dissociation kinetics. By creating Ru catalysts with well-defined nanocluster, single-atom site, and also complex site, the electrocatalytic data shows that both the nanocluster and single-atom play essential roles in water-dissociation, while the complex site possesses synergistically enhanced roles in alkaline electrolytes. This study discloses a new electronic structure-dependent water-dissociation pathway and reaction principle in Ru-based catalysts, thus offering new inspiration to design efficient and durable catalysts for the practical production of H2 in alkaline electrolytes.
Collapse
Affiliation(s)
- Chengdong Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zihe Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhenyang Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yun Gao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Chao He
- Department of Physics, Chemistry, and Pharmacy, Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Changzhu Wu
- Department of Physics, Chemistry, and Pharmacy, Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, Odense, 5230, Denmark
| | - Xikui Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Med-X Center for Materials, Sichuan University, Chengdu, 610065, P. R. China
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Med-X Center for Materials, Sichuan University, Chengdu, 610065, P. R. China
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
18
|
Guo B, Ding Y, Huo H, Wen X, Ren X, Xu P, Li S. Recent Advances of Transition Metal Basic Salts for Electrocatalytic Oxygen Evolution Reaction and Overall Water Electrolysis. NANO-MICRO LETTERS 2023; 15:57. [PMID: 36862225 PMCID: PMC9981861 DOI: 10.1007/s40820-023-01038-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 02/12/2023] [Indexed: 05/19/2023]
Abstract
Electrocatalytic oxygen evolution reaction (OER) has been recognized as the bottleneck of overall water splitting, which is a promising approach for sustainable production of H2. Transition metal (TM) hydroxides are the most conventional and classical non-noble metal-based electrocatalysts for OER, while TM basic salts [M2+(OH)2-x(Am-)x/m, A = CO32-, NO3-, F-, Cl-] consisting of OH- and another anion have drawn extensive research interest due to its higher catalytic activity in the past decade. In this review, we summarize the recent advances of TM basic salts and their application in OER and further overall water splitting. We categorize TM basic salt-based OER pre-catalysts into four types (CO32-, NO3-, F-, Cl-) according to the anion, which is a key factor for their outstanding performance towards OER. We highlight experimental and theoretical methods for understanding the structure evolution during OER and the effect of anion on catalytic performance. To develop bifunctional TM basic salts as catalyst for the practical electrolysis application, we also review the present strategies for enhancing its hydrogen evolution reaction activity and thereby improving its overall water splitting performance. Finally, we conclude this review with a summary and perspective about the remaining challenges and future opportunities of TM basic salts as catalysts for water electrolysis.
Collapse
Affiliation(s)
- Bingrong Guo
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Yani Ding
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Institute of Carbon Neutral Energy Technology, School of Energy Science and Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Haohao Huo
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Xinxin Wen
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Xiaoqian Ren
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| | - Siwei Li
- Institute of Industrial Catalysis, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
19
|
Lv N, Li Q, Zhu H, Mu S, Luo X, Ren X, Liu X, Li S, Cheng C, Ma T. Electrocatalytic Porphyrin/Phthalocyanine-Based Organic Frameworks: Building Blocks, Coordination Microenvironments, Structure-Performance Relationships. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206239. [PMID: 36599650 PMCID: PMC9982586 DOI: 10.1002/advs.202206239] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/05/2022] [Indexed: 05/05/2023]
Abstract
Metal-porphyrins or metal-phthalocyanines-based organic frameworks (POFs), an emerging family of metal-N-C materials, have attracted widespread interest for application in electrocatalysis due to their unique metal-N4 coordination structure, high conjugated π-electron system, tunable components, and chemical stability. The key challenges of POFs as high-performance electrocatalysts are the need for rational design for porphyrins/phthalocyanines building blocks and an in-depth understanding of structure-activity relationships. Herein, the synthesis methods, the catalytic activity modulation principles, and the electrocatalytic behaviors of 2D/3D POFs are summarized. Notably, detailed pathways are given for modulating the intrinsic activity of the M-N4 site by the microenvironments, including central metal ions, substituent groups, and heteroatom dopants. Meanwhile, the topology tuning and hybrid system, which affect the conjugation network or conductivity of POFs, are also considered. Furthermore, the representative electrocatalytic applications of structured POFs in efficient and environmental-friendly energy conversion areas, such as carbon dioxide reduction reaction, oxygen reduction reaction, and water splitting are briefly discussed. Overall, this comprehensive review focusing on the frontier will provide multidisciplinary and multi-perspective guidance for the subsequent experimental and theoretical progress of POFs and reveal their key challenges and application prospects in future electrocatalytic energy conversion systems.
Collapse
Affiliation(s)
- Ning Lv
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Qian Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Huang Zhu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Shengdong Mu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Xianglin Luo
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Xiancheng Ren
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Xikui Liu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Shuang Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
| | - Chong Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
- Med‐X Center for MaterialsSichuan UniversityChengdu610041P. R. China
| | - Tian Ma
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065P. R. China
- Department of UltrasoundWest China HospitalSichuan UniversityChengdu610041P. R. China
| |
Collapse
|
20
|
Wang W, Geng W, Zhang L, Zhao Z, Zhang Z, Ma T, Cheng C, Liu X, Zhang Y, Li S. Molybdenum Oxycarbide Supported Rh-Clusters with Modulated Interstitial C-O Microenvironments for Promoting Hydrogen Evolution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206808. [PMID: 36539263 DOI: 10.1002/smll.202206808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Tuning the microenvironment and electronic structure of support materials is essential strategy to induce electron transfer between supports and active centers, which is of great importance in optimizing catalytic kinetics. In this study, the molybdenum oxycarbide supported Rh-clusters are synthesized with modulated interstitial C-O microenvironments (Rh/MoOC) for promoting efficient hydrogen evolution in water splitting. Both electronic structure characterizations and theoretical calculations uncover the apparent charge transfer from Rh to MoOC, which optimizes the d-band center, H2 O adsorption energy, and hydrogen binding energy, thus enhancing its intrinsic hydrogen-evolving activities. In addition, the co-occurrence of interstitial C and O atoms in MoOC supports plays a vital role in the dissociation reaction of water during the hydrogen-evolving process. Impressively, the Rh/MoOC exhibits excellent hydrogen-evolving activities in terms of exceptional turnover frequency values (11.4 and 39.41 H2 s-1 in alkaline and acidic media) and mass activities (21.3 and 73.87 A mg-1 in alkaline and acidic media) at an overpotential of 100 mV, which is more than 40 times higher than that of the benchmark commercial Rh/C catalysts. This work sheds new light on designing water dissociation materials that surpasses most of the reported catalysts.
Collapse
Affiliation(s)
- Weiwen Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Wei Geng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Lu Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhenyang Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhen Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xikui Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yanning Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
21
|
Zhang H, Zhou Y, Xu M, Chen A, Ni Z, Akdim O, Wågberg T, Huang X, Hu G. Interface Engineering on Amorphous/Crystalline Hydroxides/Sulfides Heterostructure Nanoarrays for Enhanced Solar Water Splitting. ACS NANO 2023; 17:636-647. [PMID: 36524746 DOI: 10.1021/acsnano.2c09880] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Developing highly efficient and stable noble-metal-free electrocatalysts for water splitting is critical for producing clean and sustainable energy. Here, we design a hierarchical transition metal hydroxide/sulfide (NiFe(OH)x-Ni3S2/NF) electrode with dual heterointerface coexistence using a cation exchange-induced surface reconfiguration strategy. The electrode exhibits superior electrocatalytic activities, achieving low overpotentials of 55 mV for hydrogen evolution and 182 mV for oxygen evolution at 10 mA cm-2. Furthermore, the assembled two-electrode system requires voltages as low as 1.55 and 1.62 V to deliver industrially relevant current densities of 500 and 1000 mA cm-2, respectively, with excellent durability for over 200 h, which is comparable to commercial electrolysis. Theoretical calculations reveal that the hierarchical heterostructure increases the electronic delocalization of the Fe and Ni catalytic centers, lowering the energy barrier of the rate-limiting step and promoting O2 desorption. Finally, by implementing the catalysts in a solar-driven water electrolysis system, we demonstrate a record and durable solar-to-hydrogen (STH) conversion efficiency of up to 20.05%. This work provides a promising strategy for developing low-cost and high-efficiency bifunctional catalysts for a large-scale solar-to-hydrogen generation.
Collapse
Affiliation(s)
- Hua Zhang
- School of Materials and Energy, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Yintang Zhou
- National Engineering Research Center for Marine Aquaculture, Marine Science and Technology College, Zhejiang Ocean University, Zhoushan 316004, China
| | - Ming Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Anran Chen
- School of Materials and Energy, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Zitao Ni
- School of Materials and Energy, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Ouardia Akdim
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Thomas Wågberg
- Department of Physics, Umeå University, Umeå 901 87, Sweden
| | - Xiaoyang Huang
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, U.K
| | - Guangzhi Hu
- School of Materials and Energy, Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
- Department of Physics, Umeå University, Umeå 901 87, Sweden
| |
Collapse
|
22
|
Zhang Z, Ma P, Luo L, Ding X, Zhou S, Zeng J. Regulating Spin States in Oxygen Electrocatalysis. Angew Chem Int Ed Engl 2023; 62:e202216837. [PMID: 36598399 DOI: 10.1002/anie.202216837] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/05/2023]
Abstract
Developing efficient and stable transition metal oxides catalysts for energy conversion processes such as oxygen evolution reaction and oxygen reduction reaction is one of the key measures to solve the problem of energy shortage. The spin state of transition metal oxides is strongly correlated with their catalytic activities. In an octahedral structure of transition metal oxides, the spin state of active centers could be regulated by adjusting the splitting energy and the electron pairing energy. Regulating spin state of active centers could directly modulate the d orbitals occupancy, which influence the strength of metal-ligand bonds and the adsorption behavior of the intermediates. In this review, we clarified the significance of regulating spin state of the active centers. Subsequently, we discussed several characterization technologies for spin state and some recent strategies to regulate the spin state of the active centers. Finally, we put forward some views on the future research direction of this vital field.
Collapse
Affiliation(s)
- Zhirong Zhang
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China.,Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Peiyu Ma
- National Synchrotron Radiation Laboratory, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Lei Luo
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China.,Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Xilan Ding
- National Synchrotron Radiation Laboratory, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Shiming Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Jie Zeng
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui, 243002, P. R. China.,Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
23
|
Yan R, Zhao Z, Cheng M, Yang Z, Cheng C, Liu X, Yin B, Li S. Origin and Acceleration of Insoluble Li 2 S 2 -Li 2 S Reduction Catalysis in Ferromagnetic Atoms-based Lithium-Sulfur Battery Cathodes. Angew Chem Int Ed Engl 2023; 62:e202215414. [PMID: 36321878 PMCID: PMC10107143 DOI: 10.1002/anie.202215414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 11/05/2022]
Abstract
Accelerating insoluble Li2 S2 -Li2 S reduction catalysis to mitigate the shuttle effect has emerged as an innovative paradigm for high-efficient lithium-sulfur battery cathodes, such as single-atom catalysts by offering high-density active sites to realize in situ reaction with solid Li2 S2 . However, the profound origin of diverse single-atom species on solid-solid sulfur reduction catalysis and modulation principles remains ambiguous. Here we disclose the fundamental origin of Li2 S2 -Li2 S reduction catalysis in ferromagnetic elements-based single-atom materials to be from their spin density and magnetic moments. The experimental and theoretical studies disclose that the Fe-N4 -based cathodes exhibit the fastest deposition kinetics of Li2 S (226 mAh g-1 ) and the lowest thermodynamic energy barriers (0.56 eV). We believe that the accelerated Li2 S2 -Li2 S reduction catalysis enabled via spin polarization of ferromagnetic atoms provides practical opportunities towards long-life batteries.
Collapse
Affiliation(s)
- Rui Yan
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Zhenyang Zhao
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Menghao Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Zhao Yang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Chong Cheng
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Xikui Liu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Bo Yin
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
| | - Shuang Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengdu610065China
- Department of ChemistryTechnische Universität BerlinBerlin10623Germany
| |
Collapse
|
24
|
Wu Z, Liu L, Zhao Z, Yang C, Mu S, Zhou H, Luo X, Ma T, Li S, Zhao C. Modulating Electronic Environment of Ru Nanoclusters via Local Charge Transfer for Accelerating Alkaline Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204738. [PMID: 36403218 DOI: 10.1002/smll.202204738] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Compared to platinum catalysts, ruthenium (Ru) is disclosed as a promising alternative for alkaline water electrolysis due to its similar hydrogen adsorption energy and relatively lower water dissociation barrier. However, in the challenging alkaline media, the dissatisfied Volmer step during water dissociation of Ru metal prohibits its practical applications. Here, a new pathway to modulate the electronic environment of Ru catalysts via a local charge transfer strategy for tuning the water dissociation kinetics and accelerating the alkaline water electrolysis is proposed. The obtained catalysts are engineered by assembling and subsequently pyrolyzing the layer-stacked and 2D porphyrin-based Ru-N coordination polymers on nanocarbon supports. Benefiting from the well-defined Ru nanocluster-Nx -coordination bonds (Runc -Nx ), unique electronic environments, and local charge transfer properties, the catalysts exhibit the exceptional activity of 17 mV overpotential at 10 mA cm-2 and robust stability in water, which is more efficient than state-of-the-art Ru catalysts. The theoretical calculation suggests that the Runc -Nx sites enhance the nucleophilic attack of water and weaken the HOH bond. This study manifests that tailoring the bond environments of Ru clusters can significantly modulate their intrinsic catalytic activities and stabilities, which may open new avenues for developing high-active and durable catalysts for water electrolysis.
Collapse
Affiliation(s)
- Zihe Wu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Luchang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zhenyang Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chengdong Yang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Shengdong Mu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Hongju Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Nephrology, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xianglin Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Nephrology, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Shuang Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Department of Chemistry, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Changsheng Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
25
|
Yan R, Zhao Z, Cheng M, Yang Z, Cheng C, Liu X, Yin B, Li S. Origin and Acceleration of Insoluble Li
2
S
2
−Li
2
S Reduction Catalysis in Ferromagnetic Atoms‐based Lithium‐Sulfur Battery Cathodes. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202215414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Rui Yan
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Zhenyang Zhao
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Menghao Cheng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Zhao Yang
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Chong Cheng
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Xikui Liu
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Bo Yin
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
| | - Shuang Li
- College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China
- Department of Chemistry Technische Universität Berlin Berlin 10623 Germany
| |
Collapse
|
26
|
Xiao S, Zheng Y, Wu X, Zhou M, Rong X, Wang L, Tang Y, Liu X, Qiu L, Cheng C. Tunable Structured MXenes With Modulated Atomic Environments: A Powerful New Platform for Electrocatalytic Energy Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203281. [PMID: 35989101 DOI: 10.1002/smll.202203281] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Owing to their rich surface chemistry, high conductivity, tunable bandgap, and thermal stability, structured 2D transition-metal carbides, nitrides, and carbonitrides (MXenes) with modulated atomic environments have emerged as efficient electrochemical energy conversion systems in the past decade. Herein, the most recent advances in the engineering of tunable structured MXenes as a powerful new platform for electrocatalytic energy conversion are comprehensively summarized. First, the state-of-the-art synthetic and processing methods, tunable nanostructures, electronic properties, and modulation principles of engineering MXene-derived nanoarchitectures are focused on. The current breakthroughs in the design of catalytic centers, atomic environments, and the corresponding structure-performance correlations, including termination engineering, heteroatom doping, defect engineering, heterojunctions, and alloying, are discussed. Furthermore, representative electrocatalytic applications of structured MXenes in energy conversion systems are also summarized. Finally, the challenges in and prospects for constructing MXene-based electrocatalytic materials are also discussed. This review provides a leading-edge understanding of the engineering of various MXene-based electrocatalysts and offers theoretical and experimental guidance for prospective studies, thereby promoting the practical applications of tunable structured MXenes in electrocatalytic energy conversion systems.
Collapse
Affiliation(s)
- Sutong Xiao
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yijuan Zheng
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Xizheng Wu
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mi Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiao Rong
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Liyun Wang
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Yuanjiao Tang
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Xikui Liu
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Li Qiu
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
| | - Chong Cheng
- College of Polymer Science and Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
- Med-X Center for Materials, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
27
|
Xu X, Zhao W, Wang L, Gao S, Li Z, Hu J, Jiang Q. Anion Substitution Induced Vacancy Regulating of Cobalt Sulfoselenide Toward Electrocatalytic Overall Water Splitting. J Colloid Interface Sci 2022; 630:580-590. [DOI: 10.1016/j.jcis.2022.09.073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
|
28
|
Kong Y, Xiong D, Lu C, Wang J, Liu T, Ying S, Ma X, Yi FY. Vanadium-Based Trimetallic Metal-Organic-Framework Family as Extremely High-Performing and Ultrastable Electrocatalysts for Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2022; 14:37804-37813. [PMID: 35944544 DOI: 10.1021/acsami.2c09998] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This is the first time that the pore-space-partition (PSP) strategy is being successfully applied in the electrochemical field for water splitting, realizing the highly efficient construction of a series of ultrastable pristine MOF electrocatalysts. On integrating the vanadium-based trimetallic building cluster (M2V), the target M2V-MOFs exhibit excellent electrocatalytic activity for HER, OER, and water splitting. In particular, ultralow overpotentials of 314 and 198 mV for Fe2V-MOF as OER and HER electrocatalysts, respectively, can drive a current density of 10 mA cm-2. The fabricated Fe2V-MOF||Pt/C two-electrode configuration for the overall water splitting yields a current density of 10 mA cm-2 at only 1.6 V vs RHE, which is superior to that of the commercial IrO2||Pt/C couple. Notably, high structural and chemical stabilities still can be observed in alkaline condition. This work opens up an exciting pathway to design efficient and stable electrocatalysts based on pristine MOF by integrating the PSP strategy and multimetallic centers.
Collapse
Affiliation(s)
- Yuxuan Kong
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Dengke Xiong
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Chunxiao Lu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Jiang Wang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Tian Liu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Shuanglu Ying
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Xinghua Ma
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| | - Fei-Yan Yi
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
| |
Collapse
|
29
|
Sun F, He D, Yang K, Qiu J, Wang Z. Hydrogen Production and Water Desalination with On-demand Electricity Output Enabled by Electrochemical Neutralization Chemistry. Angew Chem Int Ed Engl 2022; 61:e202203929. [PMID: 35452186 DOI: 10.1002/anie.202203929] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Indexed: 11/05/2022]
Abstract
Energy-saving hydrogen production can be achieved by using renewables or decoupling the sluggish oxygen evolution reaction from overall water splitting, which still needs electricity input. We have realized hydrogen production and water desalination with on-demand electricity output via an electrochemical neutralization chemistry strategy that couples acidic hydrogen evolution and alkaline hydrazine oxidation with ionic exchange. The electrochemical neutralization cells allow efficient use of chemical energy and low-grade heat from the surroundings to output 0.81 kWh electricity per m3 of hydrogen. Cell function can be rapidly switched to electricity output with a high peak power density up to 85.5 mW cm-2 or spontaneous hydrogen production at a high rate up to 70.1 mol h-1 m-2 without breaking cell operation or changing cell configuration. Fast water desalination is simultaneously achieved at a high salt removal rate of 56.1 mol h-1 m-2 without an external electricity supply.
Collapse
Affiliation(s)
- Fu Sun
- State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Dongtong He
- State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Kaizhou Yang
- State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jieshan Qiu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Zhiyu Wang
- State Key Lab of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
30
|
Zheng W, Zhu R, Wu H, Ma T, Zhou H, Zhou M, He C, Liu X, Li S, Cheng C. Tailoring Bond Microenvironments and Reaction Pathways of Single‐Atom Catalysts for Efficient Water Electrolysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Weiqiong Zheng
- Sichuan University - Wangjiang Campus: Sichuan University College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering No.24 South Section 1, Yihuan Road 610065 Chengdu CHINA
| | - Ran Zhu
- Sichuan University - Wangjiang Campus: Sichuan University College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering No.24 South Section 1, Yihuan Road 610065 Chengdu CHINA
| | - Huijuan Wu
- Sichuan University - Wangjiang Campus: Sichuan University College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering No.24 South Section 1, Yihuan Road 610065 Chengdu CHINA
| | - Tian Ma
- Sichuan University West China Hospital Department of Ultrasound CHINA
| | - Hongju Zhou
- Sichuan University West China Hospital Department of Nephrology CHINA
| | - Mi Zhou
- Sichuan University - Wangjiang Campus: Sichuan University College of Biomass Science and Engineering CHINA
| | - Chao He
- Sichuan University - Wangjiang Campus: Sichuan University College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering No.24 South Section 1, Yihuan Road 610065 Chengdu CHINA
| | - Xikui Liu
- Sichuan University - Wangjiang Campus: Sichuan University College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering No.24 South Section 1, Yihuan Road 610065 Chengdu CHINA
| | - Shuang Li
- Sichuan University - Wangjiang Campus: Sichuan University College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering No.24 South Section 1, Yihuan Road 610065 Chengdu CHINA
| | - Chong Cheng
- Sichuan University Department of polymer science No. 24, Yihuan Road 610065 Chengdu CHINA
| |
Collapse
|
31
|
Zheng W, Zhu R, Wu H, Ma T, Zhou H, Zhou M, He C, Liu X, Li S, Cheng C. Tailoring Bond Microenvironments and Reaction Pathways of Single-Atom Catalysts for Efficient Water Electrolysis. Angew Chem Int Ed Engl 2022; 61:e202208667. [PMID: 35876718 DOI: 10.1002/anie.202208667] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 02/05/2023]
Abstract
Single-Atom Sites (SASs) are commonly stabilized and influenced by neighboring atoms in the host; disclosing the structure-reactivity relationships of SASs in water electrolysis are the grand challenges originating from the enormous support materials with complex structures. Through a multidisciplinary view of the design principles, synthesis strategies, characterization techniques, and theoretical analysis of structure-performance correlations, this timely review is dedicated to summarizing the most recent progress in tailoring bond microenvironments on different supports and discussing the reaction pathways and performance advantages of different SAS structures for water electrolysis . The essences and mechanisms of how SAS structures influence their electrocatalysis and the critical needs for their future developments are discussed. Finally, the challenges and perspectives are also provided to stimulate their practically widespread utilization in water-splitting electrolyzers.
Collapse
Affiliation(s)
- Weiqiong Zheng
- Sichuan University - Wangjiang Campus: Sichuan University, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, No.24 South Section 1, Yihuan Road, 610065, Chengdu, CHINA
| | - Ran Zhu
- Sichuan University - Wangjiang Campus: Sichuan University, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, No.24 South Section 1, Yihuan Road, 610065, Chengdu, CHINA
| | - Huijuan Wu
- Sichuan University - Wangjiang Campus: Sichuan University, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, No.24 South Section 1, Yihuan Road, 610065, Chengdu, CHINA
| | - Tian Ma
- Sichuan University West China Hospital, Department of Ultrasound, CHINA
| | - Hongju Zhou
- Sichuan University West China Hospital, Department of Nephrology, CHINA
| | - Mi Zhou
- Sichuan University - Wangjiang Campus: Sichuan University, College of Biomass Science and Engineering, CHINA
| | - Chao He
- Sichuan University - Wangjiang Campus: Sichuan University, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, No.24 South Section 1, Yihuan Road, 610065, Chengdu, CHINA
| | - Xikui Liu
- Sichuan University - Wangjiang Campus: Sichuan University, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, No.24 South Section 1, Yihuan Road, 610065, Chengdu, CHINA
| | - Shuang Li
- Sichuan University - Wangjiang Campus: Sichuan University, College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, No.24 South Section 1, Yihuan Road, 610065, Chengdu, CHINA
| | - Chong Cheng
- Sichuan University, Department of polymer science, No. 24, Yihuan Road, 610065, Chengdu, CHINA
| |
Collapse
|
32
|
Sun F, He D, Yang K, Qiu J, Wang Z. Hydrogen Production and Water Desalination with On‐demand Electricity Output Enabled by Electrochemical Neutralization Chemistry. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fu Sun
- Dalian University of Technology Chemical Engineering CHINA
| | - Dongtong He
- Dalian University of Technology Chemical Engineering CHINA
| | - Kaizhou Yang
- Dalian University of Technology Chemical Engineering CHINA
| | - Jieshan Qiu
- Beijing University of Chemical Technology Chemical Engineering CHINA
| | - Zhiyu Wang
- Dalian University of Technology School of Chemical Engineering No. 2 Ling Gong Rd, High Technology Zone 116024 Dalian CHINA
| |
Collapse
|
33
|
Liu P, Sun C, Liu G, Jiang Z, Zhao H. Ultra-small-sized multi-element metal oxide nanofibers: an efficient electrocatalyst for hydrogen evolution. NANOSCALE ADVANCES 2022; 4:1758-1769. [PMID: 36132161 PMCID: PMC9419870 DOI: 10.1039/d2na00100d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 06/15/2023]
Abstract
Compared to noble metals, transition metal oxides (TMOs) have positive development prospects in the field of electrocatalysis, and the synergy between the elements in multi-element TMO-based materials can improve their catalytic activity. However, it is still a challenge to synthesize multi-component TMO-based catalysts and deeply understand the effects of components on the catalytic performance of the catalysts. Here, we demonstrate multi-element ultra-small-sized nanofibers for efficient hydrogen production. The ternary NiFeCoO nanofiber-based electrode reached an overpotential of 82 mV at the current density of 10 mA cm-2 with a Tafel slope of 56 mV dec-1 in 1 M KOH, which are close to those of Pt plate (66 mV at 10 mA cm-2; the Tafel slope is 32 mV dec-1). In addition, the current density maintained 97% of its initial value after 10 h operation. We used the ternary NiFeCoO nanofiber-based electrode as an efficient counter electrode in photoelectrochemical hydrogen production to demonstrate the versatility of these nanofibers.
Collapse
Affiliation(s)
- Peng Liu
- College of Textiles & Clothing, Qingdao University No. 308 Ningxia Road Qingdao 266071 P. R. China
| | - Changchun Sun
- College of Textiles & Clothing, Qingdao University No. 308 Ningxia Road Qingdao 266071 P. R. China
| | - Guiju Liu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University No. 308 Ningxia Road Qingdao 266071 P. R. China
| | - Zhan Jiang
- College of Textiles & Clothing, Qingdao University No. 308 Ningxia Road Qingdao 266071 P. R. China
| | - Haiguang Zhao
- College of Textiles & Clothing, Qingdao University No. 308 Ningxia Road Qingdao 266071 P. R. China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University No. 308 Ningxia Road Qingdao 266071 P. R. China
| |
Collapse
|