1
|
Xue W, Benchimol E, Walther A, Ouyang N, Holstein JJ, Ronson TK, Openy J, Zhou Y, Wu K, Chowdhury R, Clever GH, Nitschke JR. Interplay of Stereochemistry and Charge Governs Guest Binding in Flexible Zn II4L 4 Cages. J Am Chem Soc 2024. [PMID: 39541177 DOI: 10.1021/jacs.4c12320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Here, we report the synthesis of a family of chiral ZnII4L4 tetrahedral cages by subcomponent self-assembly. These cages contain a flexible trialdehyde subcomponent that allows them to adopt stereochemically distinct configurations. The incorporation of enantiopure 1-phenylethylamine produced Δ4 and Λ4 enantiopure cages, in contrast to the racemates that resulted from the incorporation of achiral 4-methoxyaniline. The stereochemistry of these ZnII4L4 tetrahedra was characterized by X-ray crystallography and chiroptical spectroscopy. Upon binding the enantiopure natural product podocarpic acid, the ZnII stereocenters of the enantiopure Δ4-ZnII4L4 cage retained their Δ handedness. In contrast, the metal stereocenters of the enantiomeric Λ4-ZnII4L4 cage underwent inversion to a Δ configuration upon encapsulation of the same guest. Insights gained about the stereochemical communication between host and guest enabled the design of a process for acid/base-responsive guest uptake and release, which could be followed by chiroptical spectroscopy.
Collapse
Affiliation(s)
- Weichao Xue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu 610064, China
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Elie Benchimol
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Alexandre Walther
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Nianfeng Ouyang
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Julian J Holstein
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Tanya K Ronson
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Joseph Openy
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Yujuan Zhou
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Kai Wu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | | | - Guido H Clever
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, Dortmund 44227, Germany
| | - Jonathan R Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| |
Collapse
|
2
|
Prajapati D, Clegg JK, Mukherjee PS. Formation of a low-symmetry Pd 8 molecular barrel employing a hetero donor tetradentate ligand, and its use in the binding and extraction of C 70. Chem Sci 2024; 15:12502-12510. [PMID: 39118615 PMCID: PMC11304780 DOI: 10.1039/d4sc01332h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 06/21/2024] [Indexed: 08/10/2024] Open
Abstract
The majority of reported metallo-supramolecules are highly symmetric homoleptic assemblies of M x L y type, with a few reports on assemblies that are obtained using multicomponent self-assembly or using ambidentate ligands. Herein, we report the use of an unsymmetrical tetratopic ligand (Lun) containing pyridyl and imidazole donor sites in combination with a cis-protected Pd(ii) acceptor for the formation of a low-symmetry M8Lun 4 molecular barrel (UNMB). Four potential orientational isomeric (HHHH, HHHT, HHTT, and HTHT) molecular barrels can be anticipated for the M8Lun 4 type metallo-assemblies. However, the formation of an orientational isomer (HHTT) of the barrel was suggested from single-crystal X-ray diffraction and 1H NMR analysis of UNMB. Two large open apertures at terminals and the hydrophobic confined space surrounded by four aromatic panels of Lun make UNMB a potential host for bigger guests. UNMB encapsulates fullerenes C70 and C60 favoured by non-covalent interactions between the fullerenes and aromatic panels of the ligand molecules. Experimental and theoretical studies revealed that UNMB has the ability to bind C70 more strongly than its lower analogue C60. The stronger affinity of UNMB towards C70 was exploited to separate C70 from an equimolar mixture of C70 and C60. Moreover, C70 can be extracted from the C70⊂UNMB complex by toluene, and therefore, UNMB can be reused as a recyclable separating agent for C70 extraction.
Collapse
Affiliation(s)
- Dharmraj Prajapati
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore-560012 India
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland St. Lucia Queensland 4072 Australia
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore-560012 India
| |
Collapse
|
3
|
Siddique RG, McMurtrie JC, Clegg JK. Self-assembled Co(II) and Co(III) [M 2L 3] helicates and [M 4L 6] tetrahedra from an unsymmetrical quaterpyridine ligand. Dalton Trans 2024; 53:11237-11241. [PMID: 38916120 DOI: 10.1039/d4dt01565g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
In order to bind guest molecules with exquisite selectivity, biological host molecules often employ low symmetry binding pockets. The majority of metallosupramolecular assemblies, however, rely on symmetrical ligands to form high-symmetry assemblies that enclosing similarly symmetrical cavities. Here we employ an unsymmetrical quaterpyridine ligand in combination with cobalt(II) to form a mixture of low-symmetry [M2L3] helicates and [M4L6] tetrahedra and their subsequent oxidation to Co(III)-containing assemblies.
Collapse
Affiliation(s)
- Rashid G Siddique
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, 4072, Australia.
- School of Physics, Chemistry and Earth Sciences, The University of Adelaide, SA, 5005, Australia
| | - John C McMurtrie
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, QLD, 4072, Australia.
| |
Collapse
|
4
|
Siddique RG, Whittaker JJ, Al-Fayaad HA, McMurtrie JC, Clegg JK. Remote stereocentres do not disrupt the stereochemical coupling in homochiral [M 2L 3] helicates and [M 4L 6] tetrahedra. Dalton Trans 2023; 52:13487-13491. [PMID: 37725064 DOI: 10.1039/d3dt02486e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Despite the use of achiral ligands, the vast majority of metallosupramolecular assemblies containing octahedral tris-bidentate metal centres show strong stereochemical communication between metal centres, generally resulting in homochiral assemblies even though they are statistically disfavoured. Here we show that when resolved stereocentres are attached to the central part of a quaterpyridine ligand, the stereochemical coupling from this centre is insufficient to disrupt the strong stereochemical communication between metal centres in both [M2L3] helicates and [M4L6] tetrahedra.
Collapse
Affiliation(s)
- Rashid G Siddique
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld, 4072, Australia.
| | - Jacob J Whittaker
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld, 4072, Australia.
| | - Hydar A Al-Fayaad
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld, 4072, Australia.
| | - John C McMurtrie
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld, 4072, Australia.
| |
Collapse
|
5
|
Siddique RG, Arachchige KSA, Al-Fayaad HA, McMurtrie JC, Clegg JK. Sterics and metal-ion radius control the self-assembly of [M 2L 3] helicates. Dalton Trans 2022; 51:12704-12708. [PMID: 35943089 DOI: 10.1039/d2dt02241a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interplay of many factors influences the outcomes of self-assembly reactions. Using an acetylene-appended quaterpyridine ligand we show that both the size of the metal ion and the presence of steric repulsion between the acetylene groups result in the exclusive formation of [M2L3] helicates rather than a helicate/tetrahedron equilibrium.
Collapse
Affiliation(s)
- Rashid G Siddique
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld, 4072, Australia.
| | - Kasun S A Arachchige
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld, 4072, Australia.
| | - Hydar A Al-Fayaad
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld, 4072, Australia.
| | - John C McMurtrie
- School of Chemistry and Physics and Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| | - Jack K Clegg
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Qld, 4072, Australia.
| |
Collapse
|
6
|
Bujol RJ, Fronczek FR, Elgrishi N. On the synthesis and characterization of two different titanium-based supramolecular structures of identical stoichiometry. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2109149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Ryan J. Bujol
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA
| | - Frank R. Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA
| | - Noémie Elgrishi
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
7
|
Wang X, Zhang J, Mao X, Liu Y, Li R, Bai J, Zhang J, Redshaw C, Feng X, Tang BZ. Intermolecular Hydrogen-Bond-Assisted Solid-State Dual-Emission Molecules with Mechanical Force-Induced Enhanced Emission. J Org Chem 2022; 87:8503-8514. [PMID: 35729163 DOI: 10.1021/acs.joc.2c00617] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydrogen bonds not only play a crucial role in the life sciences but also endow molecules with fantastic physical and chemical properties, which help in the realization of their high-tech applications. This work presents an efficient strategy for achieving highly efficient solid-state dual-emission blue emitters with mechanical force-induced enhanced emission properties via intermolecular hydrogen bonds via novel pyrene-based intermediates, namely, 1,3,6,8-tetrabromo-2,7-dihydroxypyrene (1) and 1,3,6,8-tetrabromo-2-hydroxypyrene (2), prepared via hydroxylation and bromination of pyrene in high yields. Moreover, further use of a classical Pd-catalyzed coupling reaction affords new pyrene-based luminescent materials 3-5, which display high thermal stability (in range of 336-447 °C), blue emission (<463 nm), and high quantum yields in solution. Interestingly, with the monosubstituted hydroxyl (OH) or methoxy (OMe) group located at position 2 of pyrene, compounds 4a and 5 display exciting dual emission with mechanical force-induced enhanced emission properties, due to the presence of several hydrogen-bond interactions. Moreover, this series of compounds exhibits numerous advantages, for example, deeper blue emission with a narrower full width at half-maximum, a stronger steric effect, and higher hydrophilicity. Thus, these novel bromopyrene intermediates and related pyrene-based luminescent materials will pave the way for further exploration of novel organic solid-state luminescent materials for potential application in organic electronics, bioimaging, chemosensors, etc.
Collapse
Affiliation(s)
- Xiaohui Wang
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Xiaoyu Mao
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Yiwei Liu
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Ruikuan Li
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jie Bai
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China
| | - Jun Zhang
- School of Materials and Chemical Engineering, Anhui Jianzhu University, Hefei 230601, P. R. China
| | - Carl Redshaw
- Department of Chemistry, University of Hull, Cottingham Road, Hull, Yorkshire HU6 7RX, U.K
| | - Xing Feng
- Guangdong Provincial Key Laboratory of Information Photonics Technology, School of Material and Energy, Guangdong University of Technology, Guangzhou 510006, P. R. China.,Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates (South China University of Technology), Guangzhou 510640, P. R. China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| |
Collapse
|