1
|
Lu H, Zhang J, Cao Y, Wu S, Wei Y, Yin R. Advances in applications of artificial intelligence algorithms for cancer-related miRNA research. Zhejiang Da Xue Xue Bao Yi Xue Ban 2024; 53:231-243. [PMID: 38650448 PMCID: PMC11057993 DOI: 10.3724/zdxbyxb-2023-0511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/30/2024] [Indexed: 04/25/2024]
Abstract
MiRNAs are a class of small non-coding RNAs, which regulate gene expression post-transcriptionally by partial complementary base pairing. Aberrant miRNA expressions have been reported in tumor tissues and peripheral blood of cancer patients. In recent years, artificial intelligence algorithms such as machine learning and deep learning have been widely used in bioinformatic research. Compared to traditional bioinformatic tools, miRNA target prediction tools based on artificial intelligence algorithms have higher accuracy, and can successfully predict subcellular localization and redistribution of miRNAs to deepen our understanding. Additionally, the construction of clinical models based on artificial intelligence algorithms could significantly improve the mining efficiency of miRNA used as biomarkers. In this article, we summarize recent development of bioinformatic miRNA tools based on artificial intelligence algorithms, focusing on the potential of machine learning and deep learning in cancer-related miRNA research.
Collapse
Affiliation(s)
- Hongyu Lu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| | - Jia Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Yixin Cao
- Department of Medical Oncology, Affiliated Hospital of Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Shuming Wu
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Yuan Wei
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| | - Runting Yin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| |
Collapse
|
2
|
Peng Y, Xiao S, Zuo W, Xie Y, Xiao Y. Potential diagnostic value of miRNAs in sexually transmitted infections. Gene 2024; 895:147992. [PMID: 37977319 DOI: 10.1016/j.gene.2023.147992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/03/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
MiRNAs are small endogenous non-coding RNAs that have been demonstrated to be involved in post-transcriptional gene silencing, regulating a number of metabolic functions in the human body, including immune response, cellular physiology, organ development, angiogenesis, signaling, and other aspects. As popular molecules that have been studied in previous years, given their extensive regulatory functions, miRNAs hold considerable promise as non-invasive biomarkers. Sexually transmitted infections(STIs) are still widespread and have an adverse effect on individuals, communities, and society worldwide. miRNAs in the regulatory networks are generally involved in their molecular processes of formation and development. In this review, we discuss the value of miRNAs for the diagnosis of STIs.
Collapse
Affiliation(s)
- Yunchi Peng
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Shuangwen Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Wei Zuo
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yafeng Xie
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Yongjian Xiao
- Department of Clinical Laboratory, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang 421001, China.
| |
Collapse
|
3
|
Zhang X, Dong Y, Wang Y, Zhang Z, Zhang X, Zhu JJ, Tian Y, Min Q. Quality Control of Mass-Encoded Nanodevices by Compartmented DNA Origami Frames for Precision Information Coding and Logic Mapping. Angew Chem Int Ed Engl 2024; 63:e202313446. [PMID: 38038595 DOI: 10.1002/anie.202313446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 12/02/2023]
Abstract
Encoded nanostructures afford an ideal platform carrying multi-channel signal components for multiplexed assay and information security. However, with the demand on exclusivity and reproducibility of coding signals, precise control on the structure and composition of nanomaterials featuring fully distinguishable signals remains challenging. By using the multiplexing capability of mass spectrometry (MS) and spatial addressability of DNA origami nanostructures, we herein propose a quality control methodology for constructing mass-encoded nanodevices (namely MNTs-TDOFs) in the scaffold of compartmented tetrahedral DNA origami frames (TDOFs), in which the arrangement and stoichiometry of four types of mass nanotags (MNTs) can be finely regulated and customized to generate characteristic MS patterns. The programmability of combinatorial MNTs and orthogonality of individual compartments allows further evolution of MNTs-TDOFs to static tagging agents and dynamic nanoprobes for labeling and sensing of multiple targets. More importantly, structure control at single TDOF level ensures the constancy of prescribed MS outputs, by which a high-capacity coding system was established for secure information encryption and decryption. In addition to the multiplexed outputs in parallel, the nanodevices could also map logic circuits with interconnected complexity and logic events of c-Met recognition and dimerization on cell surface for signaling regulation by MS interrogation.
Collapse
Affiliation(s)
- Xue Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| | - Yuxiang Dong
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Yong Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| | - Zhenzhen Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| | - Xuemeng Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| | - Ye Tian
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, College of Engineering and Applied Sciences, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
4
|
Wen Y, Liu WY, Wang JH, Yu YL, Chen S. Simultaneous Imaging of Multiple miRNAs in Mitochondria Controlled by Fluorescently Encoded Upconversion Optical Switches for Drug Resistance Studies. Anal Chem 2023; 95:12152-12160. [PMID: 37535000 DOI: 10.1021/acs.analchem.3c02403] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
Mitochondrial miRNAs (mitomiRs) are essential regulators of biological processes by influencing mitochondrial gene expression and function. To comprehensively understand related pathological processes and treatments, simultaneous imaging of multiple mitomiRs is crucial. In this study, we present a technique that enables simultaneous monitoring of multiple mitomiRs in living cells using a near-infrared (NIR) photoactivated controlled detection probe (PD-mFleU) with a fluorescence-encoded error correction module and a nonsupervised machine learning data-processing algorithm. This method allows controlled sensing imaging of mitomiRs with a DNA reporter probe that can be activated by NIR light after targeted mitochondrial localization. Multilayer upconversion nanoparticles (UCNPs) are used for encoding probes and error correction. Additionally, the density-based spatial clustering of applications with the noise (DBSCAN) algorithm is used to process and analyze the image. Using this technique, we achieved rapid in situ imaging of the abnormal expression of three mitomiRs (miR-149, miR-590, and miR-671) related to mt-ND1 in drug-resistant cells. Furthermore, upregulating the three mitomiRs simultaneously efficiently reverted drug-resistant cells to sensitive cells. Our study provides an analytical strategy for multiplex imaging of mitomiRs in living cells with potential clinical applications.
Collapse
Affiliation(s)
- Yun Wen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Wen-Ye Liu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yong-Liang Yu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Shuai Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
5
|
Zhao X, Xu Y, Mi X. Fluorescence intensity coded DNA frameworks based on the FRET effect enable multiplexed miRNA imaging in living cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:3051-3056. [PMID: 37313594 DOI: 10.1039/d3ay00578j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
miRNA analysis has played an important role in precise diagnosis, treatment and prognosis of cancer, especially multiplexed miRNA imaging. In this work, a novel fluorescence emission intensity (FEI) encoding strategy was developed based on a tetrahedron DNA framework (TDF) carrier and the FRET effect between Cy3 and Cy5. Six FEI-encoded TDF (FEI-TDF) samples were constructed by tuning the labeling number of Cy3 and Cy5 at the vertexes of the TDF. For fluorescence characterization in vitro, distinct FEIs in the spectra and different colors under ultraviolet (UV) irradiation of FEI-TDF samples were observed. By dividing the ranges of FEIs of samples, the stability of FEIs was highly improved. Based on the ranges of FEIs in each sample, five codes with good discrimination were finally developed. Before the application of intracellular imaging, the excellent biocompatibility of the TDF carrier was proved by CCK-8 assay. The barcode probes based on samples 12, 21 and 11 were designed as example models to realize multiplexed imaging of miRNA-16, miRNA-21 and miRNA-10b in MCF-7 cells with obviously different fluorescence merged colors. FEI-TDFs provide a new research perspective for the development of fluorescence multiplexing strategies in the future.
Collapse
Affiliation(s)
- Xiaoshuang Zhao
- Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystems and Information Technology, Chinese Academy of Science, Shanghai 200050, China.
- University of Chinese Academy of Science, Beijing 100049, China
| | - Yi Xu
- Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China.
| | - Xianqiang Mi
- Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystems and Information Technology, Chinese Academy of Science, Shanghai 200050, China.
- Shanghai Advanced Research Institute, Chinese Academy of Science, Shanghai 201210, China.
- University of Chinese Academy of Science, Beijing 100049, China
- Research Center for Sensing Materials and Devices Zhejiang Lab, Hangzhou, Zhejiang, 311121, China
| |
Collapse
|
6
|
Sun Y, Wang Y, Fang L, Xu T. Signal differentiation models for multiple microRNA detection: a critical review. Anal Bioanal Chem 2023. [PMID: 36864312 DOI: 10.1007/s00216-023-04626-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
MicroRNAs (miRNAs) are a class of small, single-stranded non-coding RNAs which have critical functions in various biological processes. Increasing evidence suggested that abnormal miRNA expression was closely related to many human diseases, and they are projected to be very promising biomarkers for non-invasive diagnosis. Multiplex detection of aberrant miRNAs has great advantages including improved detection efficiency and enhanced diagnostic precision. Traditional miRNA detection methods do not meet the requirements of high sensitivity or multiplexing. Some new techniques have opened novel paths to solve analytical challenges of multiple miRNA detection. Herein, we give a critical overview of the current multiplex strategies for the simultaneous detection of miRNAs from the perspective of two different signal differentiation models, including label differentiation and space differentiation. Meanwhile, recent advances of signal amplification strategies integrated into multiplex miRNA methods are also discussed. We hope this review provides the reader with future perspectives on multiplex miRNA strategies in biochemical research and clinical diagnostics.
Collapse
Affiliation(s)
- Yue Sun
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, People's Republic of China
| | - Yinan Wang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, People's Republic of China
| | - Luo Fang
- Department of Pharmacy, The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, 310022, People's Republic of China
| | - Tailin Xu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, 518060, People's Republic of China.
| |
Collapse
|
7
|
Wei W, Lu H, Dai W, Zheng X, Dong H. Multiplexed Organelles Portrait Barcodes for Subcellular MicroRNA Array Detection in Living Cells. ACS NANO 2022; 16:20329-20339. [PMID: 36410732 DOI: 10.1021/acsnano.2c06252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Multiplexed profiling of microRNAs' subcellular expression and distribution is essential to understand their spatiotemporal function information, but it remains a crucial challenge. Herein, we report an encoding approach that leverages combinational fluorescent dye barcodes, organelle targeting elements, and an independent quantification signal, termed Multiplexed Organelles Portrait Barcodes (MOPB), for high-throughput profiling of miRNAs from organelles. The MOPB barcodes consist of heterochromatic fluorescent dye-loaded shell-core mesoporous silica nanoparticles modified with organelle targeting peptides and molecular beacon detection probes. Using mitochondria and endoplasmic reticulum as models, we encoded four Cy3/AMCA ER-MOPB and four Cy5/AMCA Mito-MOPB by varying the Cy3 and Cy5 intensity for distinguishing eight organelles' miRNAs. Significantly, the MOPB strategy successfully and accurately profiled eight subcellular organelle miRNAs' alterations in the drug-induced Ca2+ homeostasis breakdown. The approach should allow more widespread application of subcellular miRNAs and multiplexed subcellular protein biomarkers' monitoring for drug discovery, cellular metabolism, signaling transduction, and gene expression regulation readout.
Collapse
Affiliation(s)
- Wei Wei
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University, 3688 Nanhai Road, Shenzhen, Guangdong518060, China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing30 Xueyuan Road, 100083, Beijing, China
| | - Huiting Lu
- Department of Chemistry, School of Chemistry and Bioengineering, University of Science and Technology Beijing, 30 Xueyuan Road, Beijing100083, China
| | - Wenhao Dai
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing30 Xueyuan Road, 100083, Beijing, China
| | - Xiaonan Zheng
- Beijing Key Laboratory for Bioengineering and Sensing Technology, School of Chemistry and Bioengineering, University of Science and Technology Beijing30 Xueyuan Road, 100083, Beijing, China
| | - Haifeng Dong
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University, 3688 Nanhai Road, Shenzhen, Guangdong518060, China
| |
Collapse
|
8
|
Yang Q, Wang Y, Liu T, Wu C, Li J, Cheng J, Wei W, Yang F, Zhou L, Zhang Y, Yang S, Dong H. Microneedle Array Encapsulated with Programmed DNA Hydrogels for Rapidly Sampling and Sensitively Sensing of Specific MicroRNA in Dermal Interstitial Fluid. ACS NANO 2022; 16:18366-18375. [PMID: 36326107 DOI: 10.1021/acsnano.2c06261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Author: Please verify that the changes made to improve the English still retain your original meaning.Detection of microRNA (miRNA) in dermal interstitial fluid (ISF) has emerged as clinically useful in health status monitoring. However, it remains a great challenge owing to the difficult sampling and low abundance. Here, we report a DNA hydrogel microneedles (MNs) array to realize rapid enrichment and sensitive detection of miRNA in ISF. The MNs' patch consists of methacrylate hyaluronic acid (MeHA) equipped with a smart DNA circuit hydrogels' system (MeHA/DNA), in which an appropriate miRNA input enables triggering a cascading toehold-mediated DNA displacement reaction to catalytically cleave cross-linking points to generate amplified fluorescence (FL) for miRNA detection. The MeHA/DNA-MNs patch with high mechanical strength can extract adequate ISF in a short time (0.97 ± 0.2 mg in 5 min) in vivo because of its supreme water affinity. Additionally, the cascading toehold-mediated DNA displacement signal amplification reaction allows for sensitive detection of the low-abundant miRNAs down to 241.56 pM. The DNA hydrogels' MNs present potential for minimally invasive personalized diagnosis and real-time health monitoring in clinical applications.
Collapse
Affiliation(s)
- Qiqi Yang
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, P.R. China
| | - Yeyu Wang
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, P.R. China
| | - Tengfei Liu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, P.R. China
| | - Chaoxiong Wu
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P.R. China
| | - Jinze Li
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, P.R. China
| | - Jiale Cheng
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P.R. China
| | - Wei Wei
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, P.R. China
| | - Fan Yang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, P.R. China
| | - Liping Zhou
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, P.R. China
| | - Yufan Zhang
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, P.R. China
| | - Shuangshuang Yang
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, P.R. China
| | - Haifeng Dong
- Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Health Science Center, Shenzhen University, Guangdong 518060, P.R. China
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Department of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, P.R. China
| |
Collapse
|
9
|
Zhao X, Na N, Ouyang J. CRISPR/Cas9-based coronal nanostructures for targeted mitochondria single molecule imaging. Chem Sci 2022; 13:11433-11441. [PMID: 36320584 PMCID: PMC9533423 DOI: 10.1039/d2sc03329a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 09/07/2022] [Indexed: 02/12/2024] Open
Abstract
The biological state at the subcellular level is highly relevant to many diseases, and the monitoring of organelles such as mitochondria is crucial based on this. However, most DNA and protein based nanoprobes used for the detection of mitochondrial RNAs (mitomiRs) lack spatial selectivity, which leads to inefficiencies in probe delivery and signal turn-on. Herein, we constructed a novel DNA nanoprobe named protein delivery nano-corona (PDNC) to improve the delivery efficiency of Cas protein, for spatially selective imaging of mitomiRs in living cells switched on by a CRISPR/Cas system. Combined with a single-molecule counting method, this strategy enables highly sensitive detection of low-abundance mitomiR. Therefore, the strategy in this work opens up new opportunities for cell identification, early clinical diagnosis, and research in biological behaviour at the subcellular level.
Collapse
Affiliation(s)
- Xuan Zhao
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Na Na
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University Beijing 100875 China
| | - Jin Ouyang
- Key Laboratory of Theoretical and Computational Photochemistry, College of Chemistry, Beijing Normal University Beijing 100875 China
| |
Collapse
|
10
|
Li X, Yang F, Li S, Yuan R, Xiang Y. Size-Discriminative DNA Nanocage Framework Enables Sensitive and High-Fidelity Imaging of Mature MicroRNA in Living Cells. Anal Chem 2022; 94:9927-9933. [PMID: 35749565 DOI: 10.1021/acs.analchem.2c02026] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mature microRNAs (miRNAs) are closely associated with cell proliferation and differentiation, stress response, and carcinogenesis, and monitoring intracellular miRNAs can contribute to the studies of their regulatory roles and molecular mechanisms of disease progression. However, accurate and reliable detection of mature miRNAs in complex physiological environments encounters the challenge of undesired detection accuracy ascribed to the coexistence of their precursor microRNAs (pre-miRNAs) and degradation of sensing probes. Here, we demonstrate the synthesis of a new size-discriminative DNA nanocage framework (DNF) for the sensitive monitoring of mature miRNA-21 in living cells with high accuracy via cascaded toehold-mediated strand displacement reaction (TSDR) amplifications. The DNF is prepared by a simple self-assembly of six ssDNAs, and the signal probes are docked inside the DNF. Because of its rigid framework structure, the DNF shows enhanced enzyme stability. Upon entering cells, only the short target mature miRNA-21 sequences instead of the large-sized pre-miRNAs are allowed to be accommodated inside the cavity of the DNF owing to the size-discriminative capability of the DNF. The cascaded TSDR amplifications can thus be activated by the mature miRNA-21 together with endogenous ATP to result in magnified fluorescence for sensitive detection and selective discrimination of miRNA-21 from the interference pre-miRNAs. Our results indicate that the DNF probes can offer robust sensing means for detecting various intracellular mature miRNAs with high accuracy for disease diagnoses and biomedical studies.
Collapse
Affiliation(s)
- Xia Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Fang Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Shunmei Li
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Yun Xiang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|