Liu J, Liu X, Fu J, Jiang B, Li S, Wu L. Dihydroisatropolone C from Streptomyces and Its Implication in Tropolone-Ring Construction for Isatropolone Biosynthesis.
Molecules 2022;
27:molecules27092882. [PMID:
35566231 PMCID:
PMC9099902 DOI:
10.3390/molecules27092882]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
Isatropolones/isarubrolones are actinomycete secondary metabolites featuring a tropolone-ring in their structures. From the isatropolone/isarubrolone producer Streptomyces sp. CPCC 204095, 7,12-dihydroisatropolone C (H2ITC) is discovered and identified as a mixture of two interchangeable diastereomers differing in the C-6 configuration. As a major metabolite in the mycelial growth period of Streptomyces sp. CPCC 204095, H2ITC can be oxidized spontaneously to isatropolone C (ITC), suggesting H2ITC is the physiological precursor of ITC. Characterization of H2ITC makes us propose dihydrotropolone-ring construction in the biosynthesis of isatropolones.
Collapse