1
|
Tarannum I, Singh SK. Unravelling the electronic structure, bonding, and magnetic properties of inorganic dysprosocene analogues [Dy(E 4) 2] - (E = N, P, As, CH). Phys Chem Chem Phys 2024. [PMID: 39373561 DOI: 10.1039/d4cp03016h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Organometallic sandwich complexes of Dy(III) ion are ubiquitous for designing high-temperature single-ion magnets with blocking temperatures close to the liquid nitrogen boiling point. Magnetic bistability at the molecular level makes them potential candidates for nano-scale information storage materials. In the present contribution, we have thoroughly investigated the electronic structure, bonding, covalency, and magnetic anisotropy of inorganic dysprosocene complexes with a general formula of [Dy(E4)2]- (where E = N, P, As, CH) using state-of-the-art scalar relativistic density functional theory (SR-DFT), and a multiconfigurational complete active space self-consistent field (CASSCF) method with the N-electron valence perturbation theory (NEVPT2). Geometry optimization calculations predict stabilization of the [Dy(E4)2]- complexes with a linear geometry and D4h local symmetry Dy(III) ion in [Dy(N4)2]- (1) and [Dy(P4)2]- (2) complexes, while a bent geometry has been observed for the [Dy(As4)2]- (3), [Dy(P2(CH)2)2]- (4), and [Dy(As2(CH)2)2]- (5) complexes. Energy decomposition analysis (EDA) and natural bonding orbital (NBO) calculations reveal sizable 5d-ligand covalency followed by 6s/6p and weak 4f-ligand covalency in complexes 1-5. Both the natural localized molecular orbitals (NLMOs) at the DFT level and ab initio-based ligand field theory (AILFT) at the NEVPT2 level of theory predict an increase in the Dy-ligand covalency as we move from N to As. Spin-Hamiltonian parameter analysis of complexes 1-5 reveals stabilization of the mJ |±15/2〉 as the ground state with highly axial g values (gxx ∼ gyy ∼ 0 and gzz ∼ 20) and the barrier height of 2902, 1214, 1104, 1845, and 1509 K for 1-5, respectively. The Orbach effective demagnetization barrier (Ueff) for complexes 1-5 ranges between 2416-1175 K, with a record Ueff value of 2416 K observed for 1. In addition, we have explored the role of heavy element effects on the magnetic anisotropy by turning off the spin-orbit coupling of the pnictogens (N, P, and As), and our calculations clearly predict that heavy atoms in the first coordination sphere help in increasing the barrier height for magnetic relaxation. Heavy elements like P and As significantly enhance the SOC contributions, thereby providing a platform for designing and optimizing Dy(III) complexes with tailored magnetic behaviors.
Collapse
Affiliation(s)
- Ibtesham Tarannum
- Computational Inorganic Chemistry Group, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India.
| | - Saurabh Kumar Singh
- Computational Inorganic Chemistry Group, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502284, India.
| |
Collapse
|
2
|
Wang Y, Luo QC, Zheng YZ. Organolanthanide Single-Molecule Magnets with Heterocyclic Ligands. Angew Chem Int Ed Engl 2024; 63:e202407016. [PMID: 38953597 DOI: 10.1002/anie.202407016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/04/2024]
Abstract
Lanthanide (Ln) based mononuclear single-molecule magnets (SMMs) provide probably the finest ligand regulation model for magnetic property. Recently, the development of such SMMs has witnessed a fast transition from coordination to organometallic complexes because the latter provides a fertile, yet not fully excavated soil for the development of SMMs. Especially those SMMs with heterocyclic ligands have shown the potential to reach higher blocking temperature. In this minireview, we give an overview of the design principle of SMMs and highlight those "shining stars" of heterocyclic organolanthanide SMMs based on the ring sizes of ligands, analysing how the electronic structures of those ligands and the stiffness of subsequently formed molecules affect the dynamic magnetism of SMMs. Finally, we envisaged the future development of heterocyclic Ln-SMMs.
Collapse
Affiliation(s)
- Yidian Wang
- School of Chemistry, Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter and Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054, P. R. China
| | - Qian-Cheng Luo
- School of Chemistry, Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter and Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054, P. R. China
| | - Yan-Zhen Zheng
- School of Chemistry, Frontier Institute of Science and Technology, State Key Laboratory of Electrical Insulation and Power Equipment, MOE Key Laboratory for Nonequilibrium Synthesis of Condensed Matter and Xi'an Key Laboratory of Electronic Devices and Material Chemistry, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054, P. R. China
| |
Collapse
|
3
|
Lussier D, Ito E, McClain KR, Smith PW, Kwon H, Rutkauskaite R, Harvey BG, Shuh DK, Long JR. Metal-Halide Covalency, Exchange Coupling, and Slow Magnetic Relaxation in Triangular (Cp iPr5) 3U 3X 6 (X = Cl, Br, I) Clusters. J Am Chem Soc 2024; 146:21280-21295. [PMID: 39044394 PMCID: PMC11311243 DOI: 10.1021/jacs.3c11678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
The actinide elements are attractive alternatives to transition metals or lanthanides for the design of exchange-coupled multinuclear single-molecule magnets. However, the synthesis of such compounds is challenging, as is unraveling any contributions from exchange coupling to the overall magnetism. To date, only a few actinide compounds have been shown to exhibit exchange coupling and single-molecule magnetism. Here, we report triangular uranium(III) clusters of the type (CpiPr5)3U3X (1-X; X = Cl, Br, I; CpiPr5 = pentaisopropylcyclopentadienyl), which are synthesized via reaction of the aryloxide-bridged precursor (CpiPr5)2U2(OPhtBu)4 with excess Me3SiX. Spectroscopic analysis suggests the presence of covalency in the uranium-halide interactions arising from 5f orbital participation in bonding. The dc magnetic susceptibility data reveal the presence of antiferromagnetic exchange coupling between the uranium(III) centers in these compounds, with the strength of the exchange decreasing down the halide series. Ac magnetic susceptibility data further reveal all compounds to exhibit slow magnetic relaxation under zero dc field. In 1-I, which exhibits particularly weak exchange, magnetic relaxation occurs via a Raman mechanism associated with the individual uranium(III) centers. In contrast, for 1-Br and 1-Cl, magnetic relaxation occurs via an Orbach mechanism, likely involving relaxation between ground and excited exchange-coupled states. Significantly, in the case of 1-Cl, magnetic relaxation is sufficiently slow such that open magnetic hysteresis is observed up to 2.75 K, and the compound exhibits a 100-s blocking temperature of 2.4 K. This compound provides the first example of magnetic blocking in a compound containing only actinide-based ions, as well as the first example involving the uranium(III) oxidation state.
Collapse
Affiliation(s)
- Daniel
J. Lussier
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Emi Ito
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - K. Randall McClain
- U.S.
Navy, Naval Air Warfare Center, Weapons Division, Research Department, Chemistry Division, China Lake, California 93555, United States
| | - Patrick W. Smith
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Hyunchul Kwon
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Ryte Rutkauskaite
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Benjamin G. Harvey
- U.S.
Navy, Naval Air Warfare Center, Weapons Division, Research Department, Chemistry Division, China Lake, California 93555, United States
| | - David K. Shuh
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| | - Jeffrey R. Long
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
4
|
Castellanos E, Benner F, Demir S. Linear, Electron-Rich Erbium Single-Molecule Magnet with Dibenzocyclooctatetraene Ligands. Inorg Chem 2024; 63:9888-9898. [PMID: 38738864 PMCID: PMC11134505 DOI: 10.1021/acs.inorgchem.4c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/11/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
Judicious design of ligand scaffolds to highly anisotropic lanthanide ions led to substantial advances in molecular spintronics and single-molecule magnetism. Erbium-based single-molecule magnets (SMMs) are rare, which is attributed to the prolate-shaped ErIII ion requiring an equatorial ligand field for enhancing its single-ion magnetic anisotropy. Here, we present an electron-rich mononuclear Er SMM, [K(crypt-222)][Er(dbCOT)2], 1 (where dbCOT = dibenzocyclooctatetraene), that was obtained from a salt metathesis reaction of ErCl3 and K2dbCOT. The dipotassium salt, K2dbCOT, was generated through a two-electron reduction of the bare dbCOT0 ligand employing potassium graphite and was crystallized from DME to give the new solvated complex, [K(DME)]2[dbCOT]n, 2. 1 was analyzed through crystallography, electrochemistry, spectroscopy, magnetometry, and CASSCF calculations. The structure of 1 consists of an anionic metallocene complex featuring a linear (180.0°) geometry with an ErIII ion sandwiched between dianionic dbCOT ligands and an outer-sphere K+ ion encapsulated in 2.2.2-cryptand. Two pronounced redox events at negative potentials allude to the formation of a trianionic erbocene complex, [Er(dbCOT)2]3-, on the electrochemical time scale. 1 shows slow magnetic relaxation with an effective spin-reversal barrier of Ueff = 114(2) cm-1, which is close in magnitude to the calculated energies of the first and second excited states of 96.9 and 109.13 cm-1, respectively. 1 exhibits waist-constricted hysteresis loops below 4 K and constitutes the first example of an erbocene-SMM bearing fused aromatic rings to the central COT ligand. Notably, 1 comprises the largest COT scaffold implemented in erbocene SMMs, yielding the most electron-rich homoleptic erbium metallocene SMM.
Collapse
Affiliation(s)
- Ernesto Castellanos
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East
Lansing, Michigan 48824, United States
| | - Florian Benner
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East
Lansing, Michigan 48824, United States
| | - Selvan Demir
- Department of Chemistry, Michigan State University, 578 South Shaw Lane, East
Lansing, Michigan 48824, United States
| |
Collapse
|
5
|
Xu W, Luo Q, Li Z, Zhai Y, Zheng Y. Bis-Alkoxide Dysprosium(III) Crown Ether Complexes Exhibit Tunable Air Stability and Record Energy Barrier. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308548. [PMID: 38400593 PMCID: PMC11077650 DOI: 10.1002/advs.202308548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/16/2024] [Indexed: 02/25/2024]
Abstract
High-performance and air-stable single-molecule magnets (SMMs) can offer great convenience for the fabrication of information storage devices. However, the controversial requisition of high stability and magnetic axiality is hard to balance for lanthanide-based SMMs. Here, a family of dysprosium(III) crown ether complexes possessing hexagonal-bipyramidal (pseudo-D6h symmetry) local coordination geometry with tunable air stability and effective energy barrier for magnetization reversal (Ueff) are shown. The three complexes share the common formula of [Dy(18-C-6)L2][I3] (18-C-6 = 1,4,7,10,13,16-hexaoxacyclooctadecane; L = I, 1; L = OtBu 2 and L = 1-AdO 3). 1 is highly unstable in the air. 2 can survive in the air for a few minutes, while 3 remains unchanged in the air for more than 1 week. This is roughly in accordance with the percentage of buried volumes of the axial ligands. More strikingly, 2 and 3 show progressive enhancement of Ueff and 3 exhibits a record high Ueff of 2427(19) K, which significantly contributes to the 100 s blocking temperature up to 11 K for Yttrium-diluted sample, setting a new benchmark for solid-state air-stable SMMs.
Collapse
Affiliation(s)
- Wen‐Jie Xu
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and EngineeringThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061P. R. China
- Frontier Institute of Science and Technology (FIST)State Key Laboratory of Electrical Insulation and Power EquipmentMOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterXi'an Key Laboratory of Electronic Devices and Material Chemistry, and School of ChemistryXi'an Jiaotong UniversityXi'anShaanxi710054P. R. China
| | - Qian‐Cheng Luo
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and EngineeringThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061P. R. China
- Frontier Institute of Science and Technology (FIST)State Key Laboratory of Electrical Insulation and Power EquipmentMOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterXi'an Key Laboratory of Electronic Devices and Material Chemistry, and School of ChemistryXi'an Jiaotong UniversityXi'anShaanxi710054P. R. China
| | - Zi‐Han Li
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and EngineeringThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061P. R. China
- Frontier Institute of Science and Technology (FIST)State Key Laboratory of Electrical Insulation and Power EquipmentMOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterXi'an Key Laboratory of Electronic Devices and Material Chemistry, and School of ChemistryXi'an Jiaotong UniversityXi'anShaanxi710054P. R. China
| | - Yuan‐Qi Zhai
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and EngineeringThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061P. R. China
- Frontier Institute of Science and Technology (FIST)State Key Laboratory of Electrical Insulation and Power EquipmentMOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterXi'an Key Laboratory of Electronic Devices and Material Chemistry, and School of ChemistryXi'an Jiaotong UniversityXi'anShaanxi710054P. R. China
| | - Yan‐Zhen Zheng
- Department of Hepatobiliary Surgery and Institute of Advanced Surgical Technology and EngineeringThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anShaanxi710061P. R. China
- Frontier Institute of Science and Technology (FIST)State Key Laboratory of Electrical Insulation and Power EquipmentMOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed MatterXi'an Key Laboratory of Electronic Devices and Material Chemistry, and School of ChemistryXi'an Jiaotong UniversityXi'anShaanxi710054P. R. China
| |
Collapse
|
6
|
Gil Y, Aravena D. Understanding Single-Molecule Magnet properties of lanthanide complexes from 4f orbital splitting. Dalton Trans 2024; 53:2207-2217. [PMID: 38193335 DOI: 10.1039/d3dt04179d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
We present an approach for connecting the magnetic anisotropy of lanthanide mononuclear complexes with their f-orbital splitting for both idealized and real coordination environments. Our proposal is straightforward to apply and provides sensible estimations of the energy spacing of the ground multiplet for axial magnetic systems. This energy splitting controls Single-Molecule Magnet properties of lanthanide complexes, determining key parameters such as the demagnetization energy barrier (Ueff). Importantly, this approach is consistent with the current paradigm of oblate and prolate preferences for the distribution of the f-electron density, but delivers a finer description for ions belonging to the same group (e.g. the oblates TbIII and DyIII). The model provides simple explanations for some general trends observed experimentally (e.g. the low barriers for ErIII complexes in comparison to DyIII or the large barriers observed for cyclopentadienyl DyIII complexes in comparison with other ligands based on organometallic rings), contributing as a valuable tool to expand our description of ligand field effects in lanthanide-based SMMs.
Collapse
Affiliation(s)
- Yolimar Gil
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago, Chile
| | - Daniel Aravena
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile.
| |
Collapse
|
7
|
Tarannum I, Moorthy S, Singh SK. Understanding electrostatics and covalency effects in highly anisotropic organometallic sandwich dysprosium complexes [Dy(C mR m) 2] (where R = H, SiH 3, CH 3 and m = 4 to 9): a computational perspective. Dalton Trans 2023; 52:15576-15589. [PMID: 37786345 DOI: 10.1039/d3dt01646c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
In this article, we have thoroughly studied the electronic structure and 4f-ligand covalency of six mononuclear dysprosium organometallic sandwich complexes [Dy(CmRm)2]n+/- (where R = H, SiH3, CH3; m = 4 to 9; n = 1, 3) using both the scalar relativistic density functional and complete active space self-consistent field (CASSCF) and N-electron valence perturbation theory (NEVPT2) method to shed light on the ligand field effects in fine-tuning the magnetic anisotropy of these complexes. Energy decomposition analysis (EDA) and ab initio-based ligand field theory AILFT calculations predict the sizable 4f-ligand covalency in all these complexes. The analysis of CASSCF/NEVPT2 computed spin-Hamiltonian (SH) parameters indicates the stabilization of mJ |±15/2〉 for [Dy(C4(SiH3)4)2]- (1), [Dy(C5(CH3)5)2]+ (2) and [Dy(C6H6)2]3+ (3) complexes with the Ucal value of 1867.5, 1621.5 and 1070.8 cm-1, respectively. On the other hand, we observed mJ |±9/2〉 as the ground state for [Dy(C7H7)2]3- (4) and [Dy(C8H8)2]- (5) complexes with significantly smaller Ucal values of 237.1 and 38.6 cm-1 respectively. For the nine-membered ring [Dy(C9H9)2]+ (6) complex, we observed the stabilization of the mJ |±1/2〉 ground state, with the first excited state being located ∼29 cm-1 higher in energy. AILFT-NEVPT2 ligand field splitting analysis indicates that the presence of π-type 4f-ligand interactions in complexes 1-3 help generate the axial-ligand field, while the δ-type interactions in complexes 4-5 generate the equatorial ligand field despite the ligands approaching from the axial direction. As the ring size increases, φ-type interactions dominate, generating a pure equatorial ligand field stabilising mJ |±1/2〉 as the ground state for 6. Calculations suggest that the nature of the ligand field mainly governs the Ucal values in the following order: 4f-Lσ > 4f-Lπ > 4f-Lδ > 4f-Lφ. Calculations were performed by replacing ligands with CHELPG charges to access the crystal field (CF) effects which suggests the stabilization of pure mJ |±15/2〉 in all the charge-embedded models (1Q-6Q). Our findings point out that the crystal field and ligand field effects complement each other and generate a giant barrier for magnetic relaxation in the small ring complexes 1-3, while a relatively weak crystal field and adverse 4f-Lδ/4f-Lφ interactions diminish the SMM behaviour in the large ring complexes 4-6.
Collapse
Affiliation(s)
- Ibtesham Tarannum
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India.
| | - Shruti Moorthy
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India.
| | - Saurabh Kumar Singh
- Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Telangana, 502285, India.
| |
Collapse
|
8
|
Arumugam S, Schwarz B, Ravichandran P, Kumar S, Ungur L, Mondal KC. Dipotassiumtetrachloride-bridged dysprosium metallocenes: a single-molecule magnet. Dalton Trans 2023; 52:15326-15333. [PMID: 37387215 DOI: 10.1039/d3dt01325a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The present work describes the dynamic magnetic properties of the complex [(CpAr3)4DyIII2Cl4K2]·3.5(C7H8) (1), synthesized by employing a tri-aryl-substituted cyclopentadienyl ligand (CpAr3), [4,4'-(4-phenylcyclopenta-1,3-diene-1,2-diyl)bis(methylbenzene) = CpAr3H]. Each Dy(III)-metallocene weakly couples via K2Cl4, displaying slow relaxation of magnetization below 14.5 K under zero applied dc field via KD3 energy levels with an energy barrier of 136.9/133.7 cm-1 on the Dy sites. The single-ion axial anisotropy energy barrier is reduced by geometrical distortion due to the coordination of two chloride ions at each Dy centre.
Collapse
Affiliation(s)
- Selvakumar Arumugam
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, India.
| | - Björn Schwarz
- Institute for Applied Materials - Energy Storage Systems (IAM-ESS), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany.
| | | | - Sunil Kumar
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, India.
| | - Liviu Ungur
- Department of Chemistry, National University of Singapore, Singapore.
| | | |
Collapse
|
9
|
Armenis AS, Alexandropoulos DI, Worrell A, Cunha-Silva L, Dunbar KR, Stamatatos TC. Peripheral site modification in a family of dinuclear [Dy 2(hynad) 2-6(NO 3) 0-6(sol) 0-2] 0/2- single-molecule magnets bearing a {Dy 2(μ-OR) 2} 4+ diamond-shaped core and exhibiting dissimilar magnetic dynamics. Dalton Trans 2023; 52:13565-13577. [PMID: 37724338 DOI: 10.1039/d3dt02596a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
The first use of the organic chelate N-hydroxy-1,8-naphthalimide (hynadH) in DyIII chemistry has unveiled access to a synthetic 'playground' composed of four new dinuclear complexes, all of which possess the same planar {Dy2(μ-OR)2}4+ diamond-shaped core, resulting from the bridging and chelating capacity of the hynad- groups. The structural stability of the central {Dy2} core has allowed for the modulation of the peripheral coordination sites of the metal ions, and specifically the NO3-/hynad- ratio of capping groups, thus affording the compounds [Dy2(hynad)2(NO3)4(DMF)2] (1), (Me4N)2[Dy2(hynad)2(NO3)6] (2), [Dy2(hynad)4(NO3)2(H2O)2] (3), and [Dy2(hynad)6(H2O)2] (4). Because of the chemical and structural modifications in the series 1-4, the DyIII coordination polyhedra are also dissimilar, comprising the muffin (1 and 3), tetradecahedral (2), and spherical tricapped trigonal prismatic (4) geometries. Complexes 1, 2, and 4 exhibit a ferromagnetic response at low temperatures, while 3 is antiferromagnetically coupled. All compounds exhibit out-of-phase (χ''M) ac signals as a function of ac frequency and temperature, thus behaving as single-molecule magnets (SMMs), in the absence or presence of applied dc fields. Interestingly, the hynad--rich and nitrato-free complex 4, demonstrates the largest energy barrier (Ueff = 69.62(1) K) for the magnetization reversal which is attributed to the presence of the two axial triangular faces of the spherical tricapped trigonal prism by the negatively charged O-atoms of the hynad- ligands.
Collapse
Affiliation(s)
| | | | - Anne Worrell
- Department of Chemistry, 1812 Sir Isaac Brock Way, Brock University, L2S 3A1 St Catharines, Ontario, Canada.
| | - Luís Cunha-Silva
- LAQV/REQUIMTE & Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, 4169-007 Porto, Portugal.
| | - Kim R Dunbar
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, USA.
| | - Theocharis C Stamatatos
- Department of Chemistry, University of Patras, 26504 Patras, Greece.
- Institute of Chemical Engineering Sciences, Foundation for Research and Technology - Hellas (FORTH/ICE - HT), Platani, P.O. Box 1414, 26504, Patras, Greece
| |
Collapse
|
10
|
Lee VY, Gapurenko OA. Pyramidanes: newcomers to the anti-van't Hoff-Le Bel family. Chem Commun (Camb) 2023; 59:10067-10086. [PMID: 37551825 DOI: 10.1039/d3cc02757k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
In this feature article, an overview of the chemistry of pyramidanes, as a novel class of main group element clusters, is given. A general introduction sets the scene, briefly presenting the non-classical pyramidal geometry of tetracoordinate carbon, as opposed to the classical tetrahedral configuration. Pyramidanes, as the simplest organic compounds possessing a pyramidal carbon atom, are then discussed from both computational and experimental viewpoints, to show the theoretical predictions on the stability and thus the feasibility of pyramidanes has finally culminated in the isolation of the first stable representatives of the pyramidane family featuring heavy main group elements at the apex of the square pyramid. Synthetic strategies towards pyramidanes, as well as their peculiar structural features, non-classical bonding situations, and specific reactivity, are presented and discussed in this review.
Collapse
Affiliation(s)
- Vladimir Ya Lee
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Ibaraki, Japan.
| | - Olga A Gapurenko
- Institute of Physical and Organic Chemistry, Southern Federal University, Rostov on Don 344090, Russian Federation.
| |
Collapse
|
11
|
De S, Mondal A, Ruan Z, Tong M, Layfield RA. Dynamic Magnetic Properties of Germole-ligated Lanthanide Sandwich Complexes. Chemistry 2023; 29:e202300567. [PMID: 37017588 PMCID: PMC10947301 DOI: 10.1002/chem.202300567] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 04/06/2023]
Abstract
The first germole-ligated single-molecule magnets are reported, with contrasting properties found for the near-linear sandwich complexes [(η8 -COT)Ln(η5 -CpGe ]- , where Ln=Dy (1Dy ) or Er (1Er ), COT is cyclo-octatetraenyl and CpGe is [GeC4 -2,5-(SiMe3 )2 -3,4-Me2 ]2- . Whereas 1Er has an energy barrier of 120(1) cm-1 in zero applied field and open hysteresis loops up to 10 K, the relaxation in 1Dy is characterized by quantum tunneling within the ground state.
Collapse
Affiliation(s)
- Siddhartha De
- Department of Chemistry School of Life SciencesUniversity of SussexBrightonBN1 9QRUK
| | - Arpan Mondal
- Department of Chemistry School of Life SciencesUniversity of SussexBrightonBN1 9QRUK
| | - Ze‐Yu Ruan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of the Ministry of Education School of ChemistrySun-Yat Sen UniversityGuangzhou510006P. R. China
| | - Ming‐Liang Tong
- Key Laboratory of Bioinorganic and Synthetic Chemistry of the Ministry of Education School of ChemistrySun-Yat Sen UniversityGuangzhou510006P. R. China
| | - Richard A. Layfield
- Department of Chemistry School of Life SciencesUniversity of SussexBrightonBN1 9QRUK
| |
Collapse
|
12
|
Price CGT, Mondal A, Durrant JP, Tang J, Layfield RA. Structural and Magnetization Dynamics of Borohydride-Bridged Rare-Earth Metallocenium Cations. Inorg Chem 2023. [PMID: 37314885 DOI: 10.1021/acs.inorgchem.3c01038] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The structure and magnetic properties of the bimetallic borohydride-bridged dysprosocenium compound [{(η5-Cpttt)(η5-CpMe4t)Dy}2(μ:κ2:κ2-BH4)]+[B(C6F5)4]- ([3Dy][B(C6F5)4]) are reported along with the solution-phase dynamics of the isostructural yttrium and lutetium analogues (Cpttt is 1,2,4-tri(tert-butyl)cyclopentadienyl, CpMe4t is tetramethyl(tert-butyl)cyclopentadienyl). The synthesis of [3M][B(C6F5)4] was accomplished in the 2:1 stoichiometric reactions of [(η5-Cpttt)(η5-CpMe4t)Dy(BH4)] (2M) with [CPh3][B(C6F5)4], with the metallocenes 2M obtained from reactions of the half-sandwich complexes [(η5-Cpttt)M(BH4)2(THF)] (1M) (M = Y, Dy, Lu) with NaCpMe4t. Crystallographic studies show significant lengthening of the M···B distance on moving through the series 1M, 2M, and 3M, with essentially linear {M···B···M} bridges in 3M. Multinuclear NMR spectroscopy indicates restricted rotation of the Cpttt ligands in 3Y and 3Lu in solution. The single-molecule magnet (SMM) properties of [3M][B(C6F5)4] are characterized by Raman and Orbach processes, with an effective barrier of 533(18) cm-1 and relaxation via the second-excited Kramers doublet. Although quantum tunneling of the magnetization (QTM) was not observed for [3M][B(C6F5)4], it was, surprisingly, found in its magnetically dilute version, which has a very similar barrier of Ueff = 499(21) cm-1. Consistent with this observation, slightly wider openings of the magnetic hysteresis loop at 2 K are found for [3M][B(C6F5)4] but not for the diluted analogue. The dynamic magnetic properties of the dysprosium SMMs and the role of exchange interactions in 3Dy are interpreted with the aid of multireference ab initio calculations.
Collapse
Affiliation(s)
- Christopher G T Price
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| | - Arpan Mondal
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| | - James P Durrant
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Richard A Layfield
- Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ, U.K
| |
Collapse
|
13
|
Price AN, Gupta AK, de Jong WA, Arnold PL. Tris(carbene)borates; alternatives to cyclopentadienyls in organolanthanide chemistry. Dalton Trans 2023; 52:5433-5437. [PMID: 37070223 PMCID: PMC10222825 DOI: 10.1039/d3dt00718a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
The chemistry of the tris-carbene anion phenyltris(3-alkyl-imidazoline-2-yliden-1-yl)borate, [C3Me]- ligand, is initiated for f-block metal cations. Neutral, molecular complexes of the form Ln(C3)2I are formed for cerium(III), while a separated ion pair [Ln(C3)2]I forms for ytterbium(III). DFT/QTAIM computational analyses of the complexes and related tridentate tris(pyrazolyl)borate (Tp) - supported analogs demonstrates the anticipated strength of the σ donation and confirms greater covalency in the metal-carbon bonds of the [C3Me]- complexes in comparison with those in the TpMe,Me complexes. The DFT calculations demonstrate the crucial role of THF solvent in accurately reproducing the contrasting molecular and ion-pair geometries observed experimentally for the Ce and Yb complexes.
Collapse
Affiliation(s)
- Amy N Price
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA 94720, USA.
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA
| | - Ankur K Gupta
- Applied Mathematics and Computational Science Division, Lawrence Berkeley National Laboratory Berkeley, CA 94720, USA
| | - Wibe A de Jong
- Applied Mathematics and Computational Science Division, Lawrence Berkeley National Laboratory Berkeley, CA 94720, USA
| | - Polly L Arnold
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley, CA 94720, USA.
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, USA
| |
Collapse
|
14
|
Zhang P, Luo QC, Zhu Z, He W, Song N, Lv J, Wang X, Zhai QG, Zheng YZ, Tang J. Radical-Bridged Heterometallic Single-Molecule Magnets Incorporating Four Lanthanoceniums. Angew Chem Int Ed Engl 2023; 62:e202218540. [PMID: 36710242 DOI: 10.1002/anie.202218540] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023]
Abstract
The syntheses and magnetic properties of organometallic heterometallic compounds [K(THF)6 ]{CoI [(μ3 -HAN)RE2 Cp*4 ]2 } (1-RE) and [K(Crypt)]2 {CoI [(μ3 -HAN)RE2 Cp*4 ]2 } (2-RE) containing hexaazatrinaphthylene radicals (HAN⋅3- ) and four rare earth (RE) ions are reported. 1-RE shows isolable species with ligand-based mixed valency as revealed by cyclic voltammetry (CV) thus leading to the isolation of 2-RE via one-electron chemical reduction. Strong electronic communication in mixed-valency supports stronger overall ferromagnetic behaviors in 2-RE than 1-RE containing Gd and Dy ions. Ac magnetic susceptibility data reveal 1-Dy and 2-Dy both exhibit slow magnetic relaxation. Importantly, larger coercive field was observed in the hysteresis of 2-Dy at 2.0 K, indicating the enhanced SMM behavior compared with 1-Dy. Ligand-based mixed-valency strategy has been used for the first time to improve the magnetic coupling in lanthanide (Ln) SMMs, thus opening up new ways to construct strongly coupled Ln-SMMs.
Collapse
Affiliation(s)
- Peng Zhang
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Qian-Cheng Luo
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University Xi An Shi, Xi'an, 710054, China
| | - Zhenhua Zhu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Wanrong He
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Nan Song
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Junting Lv
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Xuning Wang
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Quan-Guo Zhai
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yan-Zhen Zheng
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University Xi An Shi, Xi'an, 710054, China
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
15
|
Li YL, Lu XL, Zhu ZH, Wang HL, Liang FP, Zou HH. Manipulating Solvothermal Coordination-Catalyzed In Situ Tandem Reactions to Construct Dysprosium-Based Complexes with Different Shapes and Zero-Field SMM Behaviors. Inorg Chem 2022; 61:20513-20523. [DOI: 10.1021/acs.inorgchem.2c03238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yun-Lan Li
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Xing-Lin Lu
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Zhong-Hong Zhu
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hai-Ling Wang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Fu-Pei Liang
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
- College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Hua-Hong Zou
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
16
|
Li YL, Wang HL, Zhu ZH, Lu XL, Liang FP, Zou HH. Alkali metal-linked triangular building blocks assemble a high-nucleation lanthanoid cluster based on single-molecule magnets. iScience 2022; 25:105285. [PMID: 36304113 PMCID: PMC9593797 DOI: 10.1016/j.isci.2022.105285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/24/2022] [Accepted: 10/04/2022] [Indexed: 11/28/2022] Open
Abstract
The metallic central magnetic axes in high-nucleation clusters with complex structural connections tend to be disorganized and cancel each other out. Therefore, high-nucleation clusters cannot easily exhibit single-molecule magnets (SMMs) behaviors. Herein, we select a triple-core building block (Dy3K2, 1) and use linked diamagnetic alkali metal to form an open, spherical, high-nucleation cluster Dy12Na6 (3) with SMM behavior. Furthermore, by changing the reaction conditions, Dy6K2 (2) formed by linking two Dy3 by K(I) is obtained. High-resolution electrospray mass spectrometry of clusters 1-3 effectively captures the building block Dy3, and clusters 1 and 3 and Dy3 have high stability even with the increase in ion source energy. To the best of our knowledge, this is the first time that an SMM based on a high-nucleation cluster has been obtained by connecting magnetic primitives via diamagnetic metal ions. Dy12K6 is currently the highest nuclear ns-4f heterometallic SMM.
Collapse
Affiliation(s)
- Yun-Lan Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hai-Ling Wang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Zhong-Hong Zhu
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Xing-Lin Lu
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Fu-Pei Liang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Hua-Hong Zou
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
17
|
Kapurwan S, Mondal A, Sahu PK, Konar S. Windmill-like Ln 4 Clusters [Ln = Tb(III) and Dy(III)] Bridged by [α-AsW 9O 33] 9– Unit Showing Zero-Field SMM Behavior: Experimental and Theoretical Investigation. Inorg Chem 2022; 61:17459-17468. [DOI: 10.1021/acs.inorgchem.2c02298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sandhya Kapurwan
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal462066Madhya Pradesh, India
| | - Arpan Mondal
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal462066Madhya Pradesh, India
| | - Pradip Kumar Sahu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal462066Madhya Pradesh, India
| | - Sanjit Konar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal462066Madhya Pradesh, India
| |
Collapse
|
18
|
Jin PB, Yu KX, Luo QC, Liu YY, Zhai YQ, Zheng YZ. Tetraanionic arachno-Carboranyl Ligand Imparts Strong Axiality to Terbium(III) Single-Molecule Magnets. Angew Chem Int Ed Engl 2022; 61:e202203285. [PMID: 35426226 DOI: 10.1002/anie.202203285] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Indexed: 02/05/2023]
Abstract
A family of fully sandwiched arachno-lanthanacarborane complexes formulated as {η6 -[μ-1,2-[o-C6 H4 (CH2 )2 ]-1,2-C2 B10 H10 ]2 Ln}{Li5 (THF)10 } (Ln=Tb, Dy, Ho, Er, Y) is successfully synthesized, where the "carbons-adjacent" carboranyl ligand (arachno-R2 -C2 B10 H10 4- ) bears four negative charges and coordinates to the central lanthanide ions using the hexagonal η6 C2 B4 face. Thus, the central lanthanide cations are pseudo-twelve-coordinate and have an approximate pseudo-D6h symmetry or hexagonal-prismatic geometry. As the crystal field effect imparted by this geometry is still unknown, we thoroughly investigated the magnetic properties of this series of complexes and found that the crystal field imposed by this ligand causes a relation of Tb>Dy>Ho>Er for the energy gaps between the ground and the first excited states, which is of striking resemblance to the ferrocenophane and phthalocyanine ligands although the latter two ligands give disparate local coordination geometries. Moreover, the effective energy barrier to magnetization reversal of 445(10) K, the observable hysteresis loop up to 4 K and the relaxation time of the yttrium-diluted sample reaching 193(17) seconds at 2 K under an optimized field for the Tb analogue of this family of arachno-lanthanacarborane complexes, render a new benchmark for Tb3+ -based single-molecule magnets.
Collapse
Affiliation(s)
- Peng-Bo Jin
- Frontier Institute of Science and Technology (FIST), State Key Laboratory of Mechanical Behavior, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Mater, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054, P. R. China
| | - Ke-Xin Yu
- Frontier Institute of Science and Technology (FIST), State Key Laboratory of Mechanical Behavior, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Mater, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054, P. R. China
| | - Qian-Cheng Luo
- Frontier Institute of Science and Technology (FIST), State Key Laboratory of Mechanical Behavior, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Mater, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054, P. R. China
| | - Ye-Ye Liu
- Frontier Institute of Science and Technology (FIST), State Key Laboratory of Mechanical Behavior, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Mater, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054, P. R. China
| | - Yuan-Qi Zhai
- Frontier Institute of Science and Technology (FIST), State Key Laboratory of Mechanical Behavior, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Mater, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054, P. R. China
| | - Yan-Zhen Zheng
- Frontier Institute of Science and Technology (FIST), State Key Laboratory of Mechanical Behavior, MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Mater, Xi'an Key Laboratory of Sustainable Energy and Materials Chemistry, School of Chemistry and School of Physics, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an, Shaanxi, 710054, P. R. China
| |
Collapse
|
19
|
Jin PB, Yu KX, Luo QC, Liu YY, Zhai YQ, Zheng YZ. Tetraanionic arachno‐Carboranyl Ligand Imparts Strong Axiality to Terbium(III) Single‐Molecule Magnets. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Peng-Bo Jin
- Xi'an Jiaotong University Frontier Institute of Science and Technology CHINA
| | - Ke-Xin Yu
- Xi'an Jiaotong University Frontier Institute of Science and Technology CHINA
| | - Qian-Cheng Luo
- Xi'an Jiaotong University Frontier Institute of Science and Technology CHINA
| | - Ye-Ye Liu
- Xi'an Jiaotong University Frontier Institute of Science and Technology CHINA
| | - Yuan-Qi Zhai
- Xi'an Jiaotong University Frontier Institute of Science and Technology CHINA
| | - Yan-Zhen Zheng
- Frontier Institute of Science and Technology Center for Applied Chemical Research 99 Yan Xiang LuQujiang Campus of Xi'an Jiaotong UniversityA316 Xi Yi Lou 710054 Xian CHINA
| |
Collapse
|
20
|
Long BF, Li YL, Zhu ZH, Wang HL, Liang FP, Zou HH. Assembly of pinwheel/twist-shaped chiral lanthanide clusters with rotor structures by an annular/linear growth mechanism and their magnetic properties. Dalton Trans 2022; 51:17040-17049. [DOI: 10.1039/d2dt02653h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This is the first time that an annular/linear growth mechanism has been proposed for the directional construction of lanthanide clusters with specific shapes.
Collapse
Affiliation(s)
- Bing-Fan Long
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry, and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Yun-Lan Li
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry, and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Zhong-Hong Zhu
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry, and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Hai-Ling Wang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry, and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Fu-Pei Liang
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry, and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China
| | - Hua-Hong Zou
- School of Chemistry and Pharmaceutical Sciences, State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources/Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education of China), Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry, and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
21
|
Zhu Z, Tang J. Metal–metal bond in lanthanide single-molecule magnets. Chem Soc Rev 2022; 51:9469-9481. [DOI: 10.1039/d2cs00516f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This review surveys recent critical advances in lanthanide SMMs, highlighting the influences of metal–metal bonds on the magnetization dynamics.
Collapse
Affiliation(s)
- Zhenhua Zhu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
22
|
Pramanik K, Sun YC, Brandão P, Jana NC, Wang XY, Panja A. Macrocycle supported dinuclear lanthanide complexes with different β-diketonate co-ligands displaying zero field single-molecule magnetic behaviour. NEW J CHEM 2022. [DOI: 10.1039/d2nj01017h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three different sets of isomorphous dinuclear Gd/Dy complexes with an uncommon macrocyclic ligand and β-diketonate co-ligands were reported in which Dy2 analogues are zero field SMMs.
Collapse
Affiliation(s)
- Kuheli Pramanik
- Department of Chemistry, Gokhale Memorial Girls’ College, 1/1 Harish Mukherjee Road, Kolkata, 700020, India
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB, 721152, India
| | - Yu-Chen Sun
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Narayan Ch. Jana
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB, 721152, India
| | - Xin-Yi Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Anangamohan Panja
- Department of Chemistry, Gokhale Memorial Girls’ College, 1/1 Harish Mukherjee Road, Kolkata, 700020, India
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB, 721152, India
| |
Collapse
|
23
|
Liu S, Gil Y, Zhao C, Wu J, Zhu Z, Li XL, Aravena D, Tang J. A conjugated Schiff-base macrocycle weakens the transverse crystal field of air-stable dysprosium single-molecule magnets. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01565j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The dominance of a self-condensed conjugated macrocycle over a [2 + 2] conventional macrocycle in weakening the transverse crystal field and boosting axiality provides a new route to construct high-performance air-stable lanthanide SMMs.
Collapse
Affiliation(s)
- Shuting Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yolimar Gil
- Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Casilla 233, Santiago, Chile
| | - Chen Zhao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Jinjiang Wu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Zhenhua Zhu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xiao-Lei Li
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Daniel Aravena
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile
| | - Jinkui Tang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
24
|
Panja A, Jagličić Z, Herchel R, Brandão P, Jana NC. Influence of bridging and chelating co-ligands on the distinct single-molecule magnetic behaviours in ZnDy complexes. NEW J CHEM 2022. [DOI: 10.1039/d2nj03793a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four ZnDy complexes display an effect of bridging/chelating co-ligands on distinct single-molecule magnetic behaviours, relaxing through single to multi relaxation channels.
Collapse
Affiliation(s)
- Anangamohan Panja
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB, 721152, India
- Department of Chemistry, Gokhale Memorial Girls' College, 1/1 Harish Mukherjee Road, Kolkata, 700020, India
| | - Zvonko Jagličić
- Institute of Mathematics, Physics and Mechanics & Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jadranska 19, 1000, Ljubljana, Slovenia
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146, Olomouc, Czech Republic
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Narayan Ch. Jana
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB, 721152, India
| |
Collapse
|