1
|
Song SS, Liu W, Bao JY, Zhu HT, Wang AJ, Song P, Yuan PX, Feng JJ. Photodynamic-Assisted Electrochemiluminescence Enhancement toward Advanced BODIPY for Precision Diagnosis of Parkinson. Anal Chem 2024; 96:8586-8593. [PMID: 38728058 DOI: 10.1021/acs.analchem.4c00607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Nowadays, signal enhancement is imperative to increase sensitivity of advanced ECL devices for expediting their promising applications in clinic. In this work, photodynamic-assisted electrochemiluminescence (PDECL) device was constructed for precision diagnosis of Parkinson, where an advanced emitter was prepared by electrostatically linking 2,6-dimethyl-8-(3-carboxyphenyl)4,4'-difluoroboradiazene (BET) with 1-butyl-3-methylimidazole tetrafluoroborate ([BMIm][BF4]). Specifically, protoporphyrin IX (PPIX) can trigger the photodynamic reaction under light irradiation with a wavelength of 450 nm to generate lots of singlet oxygen (1O2), showing a 2.43-fold magnification in the ECL responses. Then, the aptamer (Apt) was assembled on the functional BET-[BMIm] for constructing a "signal off" ECL biosensor. Later on, the PPIX was embedded into the G-quadruplex (G4) of the Apt to magnify the ECL signals for bioanalysis of α-synuclein (α-syn) under light excitation. In the optimized surroundings, the resulting PDECL sensor has a broad linear range of 100.0 aM ∼ 10.0 fM and a low limit of detection (LOD) of 63 aM, coupled by differentiating Parkinson patients from normal individuals according to the receiver operating characteristic (ROC) curve analysis of actual blood samples. Such research holds great promise for synthesis of other advanced luminophores, combined with achieving an early clinical diagnosis.
Collapse
Affiliation(s)
- Shu-Shu Song
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Wen Liu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Donghu Road 169, Wuhan 430071, China
| | - Jing-Yi Bao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hao-Tian Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Pei Song
- Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua 321000, China
| | - Pei-Xin Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
2
|
Yang LL, Wang H, Zhang J, Wu B, Li Q, Chen JY, Tang AL, Lam JWY, Zhao Z, Yang S, Tang BZ. Understanding the AIE phenomenon of nonconjugated rhodamine derivatives via aggregation-induced molecular conformation change. Nat Commun 2024; 15:999. [PMID: 38307892 PMCID: PMC10837119 DOI: 10.1038/s41467-024-45271-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 01/19/2024] [Indexed: 02/04/2024] Open
Abstract
The bottom-up molecular science research paradigm has greatly propelled the advancement of materials science. However, some organic molecules can exhibit markedly different properties upon aggregation. Understanding the emergence of these properties and structure-property relationship has become a new research hotspot. In this work, by taking the unique closed-form rhodamines-based aggregation-induced emission (AIE) system as model compounds, we investigated their luminescent properties and the underlying mechanism deeply from a top-down viewpoint. Interestingly, the closed-form rhodamine-based AIE system did not display the expected emission behavior under high-viscosity or low-temperature conditions. Alternatively, we finally found that the molecular conformation change upon aggregation induced intramolecular charge transfer emission and played a significant role for the AIE phenomenon of these closed-form rhodamine derivatives. The application of these closed-form rhodamine-based AIE probe in food spoilage detection was also explored.
Collapse
Affiliation(s)
- Lin-Lin Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, P.R. China
| | - Haoran Wang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, P.R. China
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
- HKUST Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area Hi-tech Park, Nanshan, Shenzhen, 518057, China
| | - Jianyu Zhang
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Bo Wu
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, P.R. China
| | - Qiyao Li
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, P.R. China
| | - Jie-Ying Chen
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - A-Ling Tang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China
| | - Jacky W Y Lam
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China
| | - Zheng Zhao
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, P.R. China.
- HKUST Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area Hi-tech Park, Nanshan, Shenzhen, 518057, China.
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang, 550025, China.
| | - Ben Zhong Tang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, P.R. China.
- Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.
- HKUST Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area Hi-tech Park, Nanshan, Shenzhen, 518057, China.
| |
Collapse
|
3
|
Sussardi AN, Turner GF, Richardson JG, Spackman MA, Turley AT, McGonigal PR, Jones AC, Moggach SA. Tandem High-Pressure Crystallography-Optical Spectroscopy Unpacks Noncovalent Interactions of Piezochromic Fluorescent Molecular Rotors. J Am Chem Soc 2023; 145:19780-19789. [PMID: 37649399 DOI: 10.1021/jacs.3c05444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
To develop luminescent molecular materials with predictable and stimuli-responsive emission, it is necessary to correlate changes in their geometries, packing structures, and noncovalent interactions with the associated changes in their optical properties. Here, we demonstrate that high-pressure single-crystal X-ray diffraction can be combined with high-pressure UV-visible absorption and fluorescence emission spectroscopies to elucidate how subtle changes in structure influence optical outputs. A piezochromic aggregation-induced emitter, sym-heptaphenylcycloheptatriene (Ph7C7H), displays bathochromic shifts in its absorption and emission spectra at high pressure. Parallel X-ray measurements identify the pressure-induced changes in specific phenyl-phenyl interactions responsible for the piezochromism. Pairs of phenyl rings from neighboring molecules approach the geometry of a stable benzene dimer, while conformational changes alter intramolecular phenyl-phenyl interactions correlated with a relaxed excited state. This tandem crystallographic and spectroscopic analysis provides insights into how subtle structural changes relate to the photophysical properties of Ph7C7H and could be applied to a library of similar compounds to provide general structure-property relationships in fluorescent organic molecules with rotor-like geometries.
Collapse
Affiliation(s)
- Alif N Sussardi
- School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FL, U.K
| | - Gemma F Turner
- School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, Australia
| | | | - Mark A Spackman
- School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, Australia
| | - Andrew T Turley
- Department of Chemistry, Durham University, Durham DH1 3LE, U.K
| | - Paul R McGonigal
- Department of Chemistry, Durham University, Durham DH1 3LE, U.K
- School of Chemistry, The University of York, York YO10 5DD, U.K
| | - Anita C Jones
- School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FL, U.K
| | - Stephen A Moggach
- School of Molecular Sciences, The University of Western Australia, Crawley, Perth 6009, Australia
| |
Collapse
|
4
|
Bolotova IA, Ustyuzhanin AO, Sergeeva ES, Faizdrakhmanova AA, Hai Y, Stepanov AV, Ushakov IA, Lyssenko KA, You L, Lvov AG. 2,3-Diarylmaleate salts as a versatile class of diarylethenes with a full spectrum of photoactivity in water. Chem Sci 2023; 14:9553-9559. [PMID: 37712048 PMCID: PMC10498723 DOI: 10.1039/d3sc02165c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
There is incessant interest in the transfer of common chemical processes from organic solvents to water, which is vital for the development of bioinspired and green chemical technologies. Diarylethenes feature a rich photochemistry, including both irreversible and reversible reactions that are in demand in organic synthesis, materials chemistry, and photopharmacology. Herein, we introduce the first versatile class of diarylethenes, namely, potassium 2,3-diarylmaleates (DAMs), that show excellent solubility in water. DAMs obtained from highly available precursors feature a full spectrum of photoactivity in water and undergo irreversible reactions (oxidative cyclization or rearrangement) or reversible photocyclization (switching), depending on their structure. This finding paves a way towards wider application of diarylethenes in photopharmacology and bioinspired technologies that require aqueous media for photochemical reactions.
Collapse
Affiliation(s)
- Iumzhana A Bolotova
- Laboratory of Photoactive Compounds, A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences 1 Favorsky St. Irkutsk 664033 Russia http://www.lvovchem.ru
- Irkutsk National Research Technical University 83, Lermontov St. Irkutsk 664074 Russia
| | - Alexander O Ustyuzhanin
- Laboratory of Photoactive Compounds, A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences 1 Favorsky St. Irkutsk 664033 Russia http://www.lvovchem.ru
- Irkutsk National Research Technical University 83, Lermontov St. Irkutsk 664074 Russia
| | - Ekaterina S Sergeeva
- Laboratory of Photoactive Compounds, A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences 1 Favorsky St. Irkutsk 664033 Russia http://www.lvovchem.ru
- Irkutsk National Research Technical University 83, Lermontov St. Irkutsk 664074 Russia
| | - Anna A Faizdrakhmanova
- Laboratory of Photoactive Compounds, A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences 1 Favorsky St. Irkutsk 664033 Russia http://www.lvovchem.ru
- Irkutsk National Research Technical University 83, Lermontov St. Irkutsk 664074 Russia
| | - Yu Hai
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
| | - Andrey V Stepanov
- Laboratory of Photoactive Compounds, A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences 1 Favorsky St. Irkutsk 664033 Russia http://www.lvovchem.ru
- Irkutsk National Research Technical University 83, Lermontov St. Irkutsk 664074 Russia
| | - Igor A Ushakov
- Laboratory of Photoactive Compounds, A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences 1 Favorsky St. Irkutsk 664033 Russia http://www.lvovchem.ru
| | | | - Lei You
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou 350002 China
| | - Andrey G Lvov
- Laboratory of Photoactive Compounds, A. E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch of the Russian Academy of Sciences 1 Favorsky St. Irkutsk 664033 Russia http://www.lvovchem.ru
- Irkutsk National Research Technical University 83, Lermontov St. Irkutsk 664074 Russia
| |
Collapse
|
5
|
Saha PK, Mallick A, Turley AT, Bismillah AN, Danos A, Monkman AP, Avestro AJ, Yufit DS, McGonigal PR. Rupturing aromaticity by periphery overcrowding. Nat Chem 2023; 15:516-525. [PMID: 36879076 PMCID: PMC10070187 DOI: 10.1038/s41557-023-01149-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 01/26/2023] [Indexed: 03/08/2023]
Abstract
The balance between strain relief and aromatic stabilization dictates the form and function of non-planar π-aromatics. Overcrowded systems are known to undergo geometric deformations, but the energetically favourable π-electron delocalization of their aromatic ring(s) is typically preserved. In this study we incremented the strain energy of an aromatic system beyond its aromatic stabilization energy, causing it to rearrange and its aromaticity to be ruptured. We noted that increasing the steric bulk around the periphery of π-extended tropylium rings leads them to deviate from planarity to form contorted conformations in which aromatic stabilization and strain are close in energy. Under increasing strain, the aromatic π-electron delocalization of the system is broken, leading to the formation of a non-aromatic, bicyclic analogue referred to as 'Dewar tropylium'. The aromatic and non-aromatic isomers have been found to exist in rapid equilibrium with one another. This investigation demarcates the extent of steric deformation tolerated by an aromatic carbocycle and thus provides direct experimental insights into the fundamental nature of aromaticity.
Collapse
Affiliation(s)
| | | | | | | | - Andrew Danos
- Department of Physics, Durham University, Durham, UK
| | | | | | | | - Paul R McGonigal
- Department of Chemistry, Durham University, Durham, UK.
- Department of Chemistry, University of York, York, UK.
| |
Collapse
|
6
|
Liu T, Zhao Y, Xu H, Lei Y, Yuan A, Chen Y, Lei J, Fu X. Intrinsic fluorescent phase change materials-based polymer networks: Tuning fluorescence emission intensity and phase change properties for thermal energy storage. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|