1
|
Zhao F, Mattana A, Alam R, Montgomery SL, Pandya A, Manetti F, Dominguez B, Castagnolo D. Cooperative chemoenzymatic and biocatalytic cascades to access chiral sulfur compounds bearing C(sp 3)-S stereocentres. Nat Commun 2024; 15:8332. [PMID: 39333478 PMCID: PMC11436715 DOI: 10.1038/s41467-024-52608-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Biocatalysis has been widely employed for the generation of carbon-carbon/heteroatom stereocentres, yet its application in chiral C(sp3)-S bond construction is rare and limited to enzymatic kinetic resolutions. Herein, we describe the enantioselective construction of chiral C(sp3)-S bonds through ene-reductase biocatalyzed conjugate reduction of prochiral vinyl sulfides. A series of cooperative sequential/concurrent chemoenzymatic and biocatalytic cascades have been developed to access a broad range of chiral sulfides, including valuable β-hydroxysulfides bearing two adjacent C(sp3)-S and C(sp3)-O stereocentres, in a stereoconvergent manner with good to excellent yields (up to 96%) and enantioselectivities (up to >99% ee). Notably, this biocatalytic strategy allows to overcome the long-standing shortcomings of catalyst poisoning and C(sp2)/C(sp3)-S bond cleavage faced in transition-metal-catalyzed hydrogenation of vinyl sulfides. Finally, the potential of this methodology is also exemplified by its broader application in the stereoconvergent assembly of chiral C(sp3)-N/O/Se bonds with good to excellent enantioselctivities.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Chemistry, University College London, London, UK
| | - Ariane Mattana
- Department of Chemistry, University College London, London, UK
| | - Ruqaiya Alam
- Department of Chemistry, University College London, London, UK
| | | | | | - Fabrizio Manetti
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena, Italy
| | | | | |
Collapse
|
2
|
Sándor E, Csuka P, Poppe L, Nagy J. Enantiocomplementary Bioreduction of 1-(Arylsulfanyl)propan-2-ones. Molecules 2024; 29:3858. [PMID: 39202937 PMCID: PMC11357645 DOI: 10.3390/molecules29163858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 09/03/2024] Open
Abstract
This study explored the enantiocomplementary bioreduction of substituted 1-(arylsulfanyl)propan-2-ones in batch mode using four wild-type yeast strains and two different recombinant alcohol dehydrogenases from Lactobacillus kefir and Rhodococcus aetherivorans. The selected yeast strains and recombinant alcohol dehydrogenases as whole-cell biocatalysts resulted in the corresponding 1-(arylsulfanyl)propan-2-ols with moderate to excellent conversions (60-99%) and high selectivities (ee > 95%). The best bioreductions-in terms of conversion (>90%) and enantiomeric excess (>99% ee)-at preparative scale resulted in the expected chiral alcohols with similar conversion and selectivity to the screening reactions.
Collapse
Affiliation(s)
| | | | - László Poppe
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary; (E.S.); (P.C.)
| | - József Nagy
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary; (E.S.); (P.C.)
| |
Collapse
|
3
|
Yu E, Li J, Wang Y, Chen Y, Xiao F, Deng GJ. Copper-Catalyzed Three-Component Synthesis of β-Hydroxysulfides from Styrene Oxide, Aryl Iodide, and Carbon Disulfide. J Org Chem 2024; 89:9287-9297. [PMID: 38896800 DOI: 10.1021/acs.joc.4c00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
A copper-catalyzed three-component coupling reaction of styrene oxide, aryl iodide, and carbon disulfide for the construction of β-hydroxysulfides has been developed. In this process, readily available CS2 was used as the sulfur source to construct C-S bonds for the synthesis of phenyl-β-hydroxysulfides and (benzo[d]thiazol)-β-hydroxysulfides. This process features mild reaction conditions, simple operation, and wide substrate scope (>50 examples).
Collapse
Affiliation(s)
- Enbo Yu
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Jun Li
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Yue Wang
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Ya Chen
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Fuhong Xiao
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
4
|
Han M, Liu C, Li X, Jiang J, Liu Z, Hu L. Regio- and Enantioselective Construction of Tetrazole Hemiaminal Esters and Related Prodrugs via Biocatalytic Dynamic Kinetic Resolution. J Org Chem 2024; 89:1465-1472. [PMID: 38251869 DOI: 10.1021/acs.joc.3c02076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Enzyme-catalyzed dynamic kinetic resolution was applied to the one-pot regio- and enantioselective synthesis of 2,5-disubstituted tetrazole hemiaminal esters, among which 72% of the products were obtained in excellent enantiopurities (99% ees). Tunable stereoselectivity was achieved by using different types of enzymes during the synthesis of a key intermediate for a clinic drug candidate. Successful preparation of tetrazole ester prodrugs and high catalyst recyclability further demonstrated the potential practical application of this protocol.
Collapse
Affiliation(s)
- Maochun Han
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Changming Liu
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Xinyu Li
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Jingyu Jiang
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Ziliang Liu
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Lei Hu
- School of Pharmacy, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| |
Collapse
|
5
|
Liu X, Hao L, Wang Y, Ji Y. Synthesis of β-Hydroxysulfides via Multi-Component Cascade Hydroxysulfenylation of Styrenes with NH 4 SCN and Water under Transition-metal-free Conditions. Chem Asian J 2024; 19:e202300901. [PMID: 37964673 DOI: 10.1002/asia.202300901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/16/2023]
Abstract
Transition-mental-free multi-component hydroxysulfenylation of styrenes with NH4 SCN and water to from β-hydroxysulfides is established. The reaction mechanism proceeded via a domino reaction after a radical addition to 2-phenylimidazo[1,2-a]pyridines. This approach features a wide substrate scope and functional group compatibility, providing 34 compounds in acceptable yields.
Collapse
Affiliation(s)
- Xian Liu
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Liqiang Hao
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yangyang Wang
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yafei Ji
- Engineering Research Center of Pharmaceutical Process Chemistry, Ministry of Education, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
6
|
Cigan E, Pletz J, Berger SA, Hierzberger B, Grilec-Zlamal M, Steiner A, Oroz-Guinea I, Kroutil W. Concise synthesis of ( R)-reticuline and (+)-salutaridine by combining early-stage organic synthesis and late-stage biocatalysis. Chem Sci 2023; 14:9863-9871. [PMID: 37736642 PMCID: PMC10510765 DOI: 10.1039/d3sc02304d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/10/2023] [Indexed: 09/23/2023] Open
Abstract
Efficient access to the morphinan scaffold remains a major challenge in both synthetic chemistry and biotechnology. Here, a biomimetic chemo-enzymatic strategy to synthesize the natural promorphinan intermediate (+)-salutaridine is demonstrated. By combining early-stage organic synthesis with enzymatic asymmetric key step transformations, the prochiral natural intermediate 1,2-dehydroreticuline was prepared and subsequently stereoselectively reduced by the enzyme 1,2-dehydroreticuline reductase obtaining (R)-reticuline in high ee and yield (>99% ee, up to quant. conversion, 92% isol. yield). In the final step, membrane-bound salutaridine synthase was used to perform the selective ortho-para phenol coupling to give (+)-salutaridine. The synthetic route shows the potential of combining early-stage advanced organic chemistry to minimize protecting group techniques with late-stage multi-step biocatalysis to provide an unprecedented access to the medicinally important compound class of promorphinans.
Collapse
Affiliation(s)
- Emmanuel Cigan
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz Heinrichstrasse 28/II 8010 Graz Austria
| | - Jakob Pletz
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz Heinrichstrasse 28/II 8010 Graz Austria
| | - Sarah A Berger
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz Heinrichstrasse 28/II 8010 Graz Austria
| | - Bettina Hierzberger
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz Heinrichstrasse 28/II 8010 Graz Austria
| | - Michael Grilec-Zlamal
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz Heinrichstrasse 28/II 8010 Graz Austria
| | - Alexander Steiner
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz Heinrichstrasse 28/II 8010 Graz Austria
| | - Isabel Oroz-Guinea
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz Heinrichstrasse 28/II 8010 Graz Austria
| | - Wolfgang Kroutil
- Institute of Chemistry, University of Graz, NAWI Graz, BioTechMed Graz Heinrichstrasse 28/II 8010 Graz Austria
- Field of Excellence BioHealth, University of Graz 8010 Graz Austria
| |
Collapse
|
7
|
Anselmi S, Carvalho ATP, Serrano-Sanchez A, Ortega-Roldan JL, Caswell J, Omar I, Perez-Ortiz G, Barry SM, Moody TS, Castagnolo D. Discovery and Rational Mutagenesis of Methionine Sulfoxide Reductase Biocatalysts To Expand the Substrate Scope of the Kinetic Resolution of Chiral Sulfoxides. ACS Catal 2023; 13:4742-4751. [PMID: 37066047 PMCID: PMC10088026 DOI: 10.1021/acscatal.3c00372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/27/2023] [Indexed: 04/18/2023]
Abstract
Methionine sulfoxide reductase A (MsrA) enzymes have recently found applications as nonoxidative biocatalysts in the enantioselective kinetic resolution of racemic sulfoxides. This work describes the identification of selective and robust MsrA biocatalysts able to catalyze the enantioselective reduction of a variety of aromatic and aliphatic chiral sulfoxides at 8-64 mM concentration with high yields and excellent ees (up to 99%). Moreover, with the aim to expand the substrate scope of MsrA biocatalysts, a library of mutant enzymes has been designed via rational mutagenesis utilizing in silico docking, molecular dynamics, and structural nuclear magnetic resonance (NMR) studies. The mutant enzyme MsrA33 was found to catalyze the kinetic resolution of bulky sulfoxide substrates bearing non-methyl substituents on the sulfur atom with ees up to 99%, overcoming a significant limitation of the currently available MsrA biocatalysts.
Collapse
Affiliation(s)
- Silvia Anselmi
- Department
of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, U. K.
| | - Alexandra T. P. Carvalho
- Department
of Biocatalysis and Isotope Chemistry, Almac, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, U. K.
| | | | | | - Jill Caswell
- Department
of Biocatalysis and Isotope Chemistry, Almac, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, U. K.
| | - Iman Omar
- Department
of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, U. K.
- Faculty
of Natural, Mathematical and Engineering Sciences, Department of Chemistry, King’s College London, 7 Trinity Street, SE1 1DB London, U. K.
| | - Gustavo Perez-Ortiz
- Faculty
of Natural, Mathematical and Engineering Sciences, Department of Chemistry, King’s College London, 7 Trinity Street, SE1 1DB London, U. K.
| | - Sarah M. Barry
- Faculty
of Natural, Mathematical and Engineering Sciences, Department of Chemistry, King’s College London, 7 Trinity Street, SE1 1DB London, U. K.
| | - Thomas S. Moody
- Department
of Biocatalysis and Isotope Chemistry, Almac, 20 Seagoe Industrial Estate, Craigavon BT63 5QD, U. K.
- Arran
Chemical Company Limited, Unit 1 Monksland Industrial Estate, Athlone,
Co., Roscommon N37 DN24, Ireland
| | - Daniele Castagnolo
- Department
of Chemistry, University College London, 20 Gordon Street, WC1H 0AJ London, U. K.
| |
Collapse
|
8
|
Xia X, Wang Z. Cr-Catalyzed Diastereo- and Enantioselective Synthesis of β-Hydroxy Sulfides and Selenides. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaowen Xia
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Zhaobin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|