1
|
Liu H, Zhang Y, Zhang L, Mu X, Zhang L, Zhu S, Wang K, Yu B, Jiang Y, Zhou J, Yang F. Unveiling Atomic-Scaled Local Chemical Order of High-Entropy Intermetallic Catalyst for Alkyl-Substitution-Dependent Alkyne Semihydrogenation. J Am Chem Soc 2024; 146:20193-20204. [PMID: 39004825 DOI: 10.1021/jacs.4c05295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
High-entropy intermetallic (HEI) nanocrystals, composed of multiple elements with an ordered structure, are of immense interest in heterogeneous catalysis due to their unique geometric and electronic structures and the cocktail effect. Despite tremendous efforts dedicated to regulating the metal composition and structures with advanced synthetic methodologies to improve the performance, the surface structure, and local chemical order of HEI and their correlation with activity at the atomic level remain obscure yet challenging. Herein, by determining the three-dimensional (3D) atomic structure of quinary PdFeCoNiCu (PdM) HEI using atomic-resolution electron tomography, we reveal that the local chemical order of HEI regulates the surface electronic structures, which further mediates the alkyl-substitution-dependent alkyne semihydrogenation. The 3D structures of HEI PdM nanocrystals feature an ordered (intermetallic) core enclosed by a disordered (solid-solution) shell rather than an ordered surface. The lattice mismatch between the core and shell results in apparent near-surface distortion. The chemical order of the intermetallic core increases with annealing temperature, driving the electron redistribution between Pd and M at the surface, but the surface geometrical (chemically disordered) configurations and compositions are essentially unchanged. We investigate the catalytic performance of HEI PdM with different local chemical orders toward semihydrogenation across a broad range of alkynes, finding that the electron density of surface Pd and the hindrance effect of alkyl substitutions on alkynes are two key factors regulating selective semihydrogenation. We anticipate that these findings on surface atomic structure will clarify the controversy regarding the geometric and/or electronic effects of HEI catalysts and inspire future studies on tuning local chemical order and surface engineering toward enhanced catalysts.
Collapse
Affiliation(s)
- Haojie Liu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yao Zhang
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Luyao Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xilong Mu
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Lei Zhang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Sheng Zhu
- Institute of Molecular Science, Shanxi University, Taiyuan 030006, China
| | - Kun Wang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Boyuan Yu
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yulong Jiang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jihan Zhou
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Feng Yang
- Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Zhou X, Mukoyoshi M, Kusada K, Yamamoto T, Toriyama T, Murakami Y, Kawaguchi S, Kubota Y, Seo O, Sakata O, Ina T, Kitagawa H. First synthesis of RuSn solid-solution alloy nanoparticles and their enhanced hydrogen evolution reaction activity. Chem Sci 2024; 15:7560-7567. [PMID: 38784732 PMCID: PMC11110130 DOI: 10.1039/d3sc06786f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/14/2024] [Indexed: 05/25/2024] Open
Abstract
Solid-solution alloys based on platinum group metals and p-block metals have attracted much attention due to their promising potential as materials with a continuously fine-tunable electronic structure. Here, we report on the first synthesis of novel solid-solution RuSn alloy nanoparticles (NPs) by electrochemical cyclic voltammetry sweeping of RuSn@SnOx NPs. High-angle annular dark-field scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy maps confirmed the random and homogeneous distribution of Ru and Sn elements in the alloy NPs. Compared with monometallic Ru NPs, the RuSn alloy NPs showed improved hydrogen evolution reaction (HER) performance. The overpotentials of Ru0.94Sn0.06 NPs/C and Ru0.87Sn0.13 NPs/C to achieve a current density of 10 mA cm-2 were 43.41 and 33.19 mV, respectively, which are lower than those of monometallic Ru NPs/C (53.53 mV) and commercial Pt NPs/C (55.77 mV). The valence-band structures of the NPs investigated by hard X-ray photoelectron spectroscopy demonstrated that the d-band centre of RuSn NPs shifted downward compared with that of Ru NPs. X-ray photoelectron spectroscopy and X-ray absorption near-edge structure analyses indicated that in the RuSn alloy NPs, charge transfer occurs from Sn to Ru, which was considered to result in a downward shift of the d-band centre in RuSn NPs and to regulate the adsorption energy of intermediate Hads effectively, and thus enable the RuSn solid-solution alloy NPs to exhibit excellent HER catalytic properties.
Collapse
Affiliation(s)
- Xin Zhou
- Division of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Megumi Mukoyoshi
- Division of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| | - Kohei Kusada
- Division of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
- The HAKUBI Center for Advanced Research, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
- JST-PRESTO Honcho 4-1-8, Kawaguchi Saitama 332-0012 Japan
| | - Tomokazu Yamamoto
- The Ultramicroscopy Research Center, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Takaaki Toriyama
- The Ultramicroscopy Research Center, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Yasukazu Murakami
- The Ultramicroscopy Research Center, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
- Department of Applied Quantum Physics and Nuclear Engineering, Kyushu University 744 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Shogo Kawaguchi
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute (JASRI) SPring-8 1-1-1 Kouto, Sayo-cho, Sayo-gun Hyogo 679-5198 Japan
| | - Yoshiki Kubota
- Department of Physics, Graduate School of Science, Osaka Metropolitan University Sakai Osaka 599-8531 Japan
| | - Okkyun Seo
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute (JASRI) SPring-8 1-1-1 Kouto, Sayo-cho, Sayo-gun Hyogo 679-5198 Japan
- Research Network and Facility Services Division, National Institute for Materials Science (NIMS) 1-1-1 Kouto, Sayo-cho, Sayo-gun Hyogo 679-5148 Japan
| | - Osami Sakata
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute (JASRI) SPring-8 1-1-1 Kouto, Sayo-cho, Sayo-gun Hyogo 679-5198 Japan
- Research Network and Facility Services Division, National Institute for Materials Science (NIMS) 1-1-1 Kouto, Sayo-cho, Sayo-gun Hyogo 679-5148 Japan
| | - Toshiaki Ina
- Center for Synchrotron Radiation Research, Japan Synchrotron Radiation Research Institute (JASRI) SPring-8 1-1-1 Kouto, Sayo-cho, Sayo-gun Hyogo 679-5198 Japan
| | - Hiroshi Kitagawa
- Division of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa-Oiwakecho, Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
3
|
Tang Y, Wang H, Guo C, Yang Z, Zhao T, Liu J, Jiang Y, Wang W, Zhang Q, Wu D, Zhao Y, Wen XD, Wang F. Ruthenium-Cobalt Solid-Solution Alloy Nanoparticles for Enhanced Photopromoted Thermocatalytic CO 2 Hydrogenation to Methane. ACS NANO 2024; 18:11449-11461. [PMID: 38644575 DOI: 10.1021/acsnano.4c02416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Bimetallic alloy nanoparticles have garnered substantial attention for diverse catalytic applications owing to their abundant active sites and tunable electronic structures, whereas the synthesis of ultrafine alloy nanoparticles with atomic-level homogeneity for bulk-state immiscible couples remains a formidable challenge. Herein, we present the synthesis of RuxCo1-x solid-solution alloy nanoparticles (ca. 2 nm) across the entire composition range, for highly efficient, durable, and selective CO2 hydrogenation to CH4 under mild conditions. Notably, Ru0.88Co0.12/TiO2 and Ru0.74Co0.26/TiO2 catalysts, with 12 and 26 atom % of Ru being substituted by Co, exhibit enhanced catalytic activity compared with the monometallic Ru/TiO2 counterparts both in dark and under light irradiation. The comprehensive experimental investigations and density functional theory calculations unveil that the electronic state of Ru is subtly modulated owing to the intimate interaction between Ru and Co in the alloy nanoparticles, and this effect results in the decline in the CO2 conversion energy barrier, thus ultimately culminating in an elevated catalytic performance relative to monometallic Ru and Co catalysts. In the photopromoted thermocatalytic process, the photoinduced charge carriers and localized photothermal effect play a pivotal role in facilitating the chemical reaction process, which accounts for the further boosted CO2 methanation performance.
Collapse
Affiliation(s)
- Yunxiang Tang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Hao Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Chan Guo
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Zhengyi Yang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Tingting Zhao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Jiurong Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
- Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong 518057, P. R. China
| | - Wenlong Wang
- School of Energy and Power Engineering, Shandong University, Jinan 250061, P. R. China
| | - Quan Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Dongshuang Wu
- School of Materials Science & Engineering, Natural Sciences and Science Education in National Institute of Education, Nanyang Technological University, Singapore 639798, Singapore
| | - Yufei Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiao-Dong Wen
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, Shanxi 030001, P. R. China
- National Energy Center for Coal to Liquids, Synfuels China Co., Ltd, Huairou District, Beijing 101400, P. R. China
| | - Fenglong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan 250061, P. R. China
- Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong 518057, P. R. China
| |
Collapse
|
4
|
Tan Z, Huang B. Independent Multiple-Atom-Site Functionality in Composition Adjustable Immiscible Ru-Rh-Pd-Pt Solid-Solution High-Entropy Alloys for NO x Reduction Outperforming Rh. Angew Chem Int Ed Engl 2024; 63:e202400496. [PMID: 38390642 DOI: 10.1002/anie.202400496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/11/2024] [Accepted: 02/21/2024] [Indexed: 02/24/2024]
Abstract
The high-entropy-alloy (HEA) nanoparticles with four, five or more metals significantly can yield the developments of functional materials with excellent performances in various reactions. However, the underlying reaction mechanisms of heterogeneous catalysis for HEA have been rarely investigated, due to their diverse elements and complex compositions. In this study, we successfully synthesized the homogeneously dispersed Ru-Rh-Pd-Pt HEA with adjustable compositions, as the multiple-atom-site catalysts (MASC). In the NOx reduction performance tests, Ru0.4 (Rh0.33Pd0.33Pt0.33)0.6 MASC showed the highest activity, which was significantly improved compared to that of the best monometal Rh, with the light-off temperature decreasing by ca. 50 °C. The Fourier transform infrared measurements revealed that the outstanding activity of Ru-Rh-Pd-Pt MASC was attributable to the well-coupled elementary steps of the CO adsorption, NO adsorption, NO dissociation and O spillover on the Ru, Rh, Rh-Pd and Pt sites, respectively, which explained the first clear reaction mechanism in heterogeneous catalysis for HEA.
Collapse
Affiliation(s)
- Zhe Tan
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Innovation Harbour, Xi-xian New District, Xi'an, 712-000, China
| | - Bo Huang
- National Innovation Platform (Center) for Industry-Education Integration of Energy Storage Technology, Xi'an Jiaotong University, Innovation Harbour, Xi-xian New District, Xi'an, 712-000, China
- Institute of Chemical Engineering and Technology Xi'an Jiaotong University, Innovation Harbour, Xi-xian New District, Xi'an, 712-000, China
- School of Future Technology, Xi'an Jiaotong University, Innovation Harbour, Xi-xian New District, Xi'an, 712-000, China
| |
Collapse
|
5
|
Zhang S, Yin L, Wang S, Liu JC, Zhang Y, Wen Y, Zhang Q, Du Y. Ternary Rare Earth Alloy Pt 3-xIr xSc Nanoparticles Modulate Negatively Charged Pt via Charge Transfer To Facilitate pH-Universal Hydrogen Evolution. ACS NANO 2023; 17:23103-23114. [PMID: 37930125 DOI: 10.1021/acsnano.3c08921] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Rare earth (RE) elements possess electronic configurations that can provide additional pathways for tailoring the electronic structures of active elements through alloying, making it an important area of exploration in electrocatalysis. However, the large negative redox potential between RE and Pt has hindered the development of RE nanoalloys. In this study, a solid-phase synthesis strategy was employed to synthesize ternary Pt3-xIrxSc nanoparticles (NPs). By leveraging the electronegativity difference between Pt (2.28), Ir (2.20), and Sc (1.36), a charge-balance strategy was implemented to stabilize and enhance the catalytic performance of the alloy. The electron transfer from Sc to Pt/Ir results in the latter being negatively charged, and the Ir modifies the electron density of Pt, enabling favorable adsorption of active H species during the hydrogen evolution reaction (HER). Pt2IrSc exhibits enhanced HER activity at all pH values, achieving low overpotentials at 10 mA cm-2 of only 13, 18, and 25 mV in 0.5 M H2SO4, 1 M PBS, and 1 M KOH, respectively. This electrocatalyst also exhibits robust electrocatalytic stability even after 20,000 cycles. This work represents an application of the charge balance strategy to RE nanoalloys, and it is expected to inspire the design and synthesis of highly reactive RE nanoalloys.
Collapse
Affiliation(s)
- Shuai Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensing Interdisciplinary Science Center, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Leilei Yin
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensing Interdisciplinary Science Center, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Siyuan Wang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensing Interdisciplinary Science Center, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Jin-Cheng Liu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensing Interdisciplinary Science Center, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Yabin Zhang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, MOE Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, and School of Resources Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yongqing Wen
- Rare Earth Advanced Materials Technology Innovation Center, Baotou 014010, China
| | - Qian Zhang
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an 710048, China
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Smart Sensing Interdisciplinary Science Center, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| |
Collapse
|
6
|
Gao J, Luo S, Fan Y, Ma Y, Wang L, Fu Z. Preparation of Co dual atomic site catalysts loaded on defect-engineered MOFs material with superb chemiluminescent enhancement effect for sensitive detection of bacteria. Anal Chim Acta 2023; 1282:341909. [PMID: 37923406 DOI: 10.1016/j.aca.2023.341909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/11/2023] [Accepted: 10/10/2023] [Indexed: 11/07/2023]
Abstract
BACKGROUND Dual atomic site catalysts (DASCs) have aroused extensive interest in analytical chemistry on account of the superb catalytic activity caused by the highly-exposed active centers and synergistic effect of adjacent active centers. The reported protocols for preparing DASCs usually involve harsh conditions such as acid/base etching and high-temperature calcination, leading to unfavorable water dispersity and restricted application. It is crucial to develop DASCs with satisfactory water dispersity, improved stability, and mild preparation procedures to facilitate their application as signal probes in analytical chemistry. RESULTS Formic acid was adopted as a modulator for preparing MOF-808 with abundant defective sites, which was used as the carrier for implanting Co atoms. Co DASCs with a special coordination structure of Co2-O10 and a high loading efficiency of 11.1 wt% were prepared with a mild solvothermal protocol. The resultant Co DASCs can significantly accelerate decay of H2O2 for forming numerous reactive oxygen radicals and boost chemiluminescent (CL) signal. Co DASCs at 1.0 μg mL-1 can enhance the CL signal of luminol-H2O2 system by about 5800 times. Thanks to their satisfactory water dispersity and excellent CL enhancement performance, they were used as ultra-sensitive CL signal probes for monitoring methicillin-resistant Staphylococcus aureus. The method shows a detection range of 102-107 CFU mL-1 and a detection limit of 47 CFU mL-1. Antibiotic susceptibility test was performed with the established CL method to prove its practicality. SIGNIFICANCE The water dispersible Co DASCs prepared with facile and mild solvothermal protocol exhibit prominent peroxidase-like activity and can promote the production of reactive oxygen radicals for boosting CL signal. Therefore, this study paves an avenue for implanting DASCs in defect-engineered carrier to prepare signal probes suitable for development of ultra-sensitive CL analytical methods.
Collapse
Affiliation(s)
- Jiaqi Gao
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Shuai Luo
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Yehan Fan
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Yuchan Ma
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Lin Wang
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China
| | - Zhifeng Fu
- NMPA Key Laboratory for Quality Monitoring of Narcotic Drugs and Psychotropic Substances, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
7
|
Zhang J, Chen H, Liu S, Wang LD, Zhang XF, Wu JX, Yu LH, Zhang XH, Zhong S, Du ZY, He CT, Chen XM. Optimizing the Spatial Density of Single Co Sites via Molecular Spacing for Facilitating Sustainable Water Oxidation. J Am Chem Soc 2023; 145:20000-20008. [PMID: 37610355 DOI: 10.1021/jacs.3c06665] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Advances in single-atom (-site) catalysts (SACs) provide a new solution of atomic economy and accuracy for designing efficient electrocatalysts. In addition to a precise local coordination environment, controllable spatial active structure and tolerance under harsh operating conditions remain great challenges in the development of SACs. Here, we show a series of molecule-spaced SACs (msSACs) using different acid anhydrides to regulate the spatial density of discrete metal phthalocyanines with single Co sites, which significantly improve the effective active-site numbers and mass transfer, enabling one of the msSACs connected by pyromellitic dianhydride to exhibit an outstanding mass activity of (1.63 ± 0.01) × 105 A·g-1 and TOFbulk of 27.66 ± 1.59 s-1 at 1.58 V (vs RHE) and long-term durability at an ultrahigh current density of 2.0 A·cm-2 under industrial conditions for oxygen evolution reaction. This study demonstrates that the accessible spatial density of single atom sites can be another important parameter to enhance the overall performance of catalysts.
Collapse
Affiliation(s)
- Jia Zhang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, and College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Hao Chen
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, and College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Shoujie Liu
- School of Materials Science and Engineering, Anhui University, Hefei 230601, China
| | - Li-Dong Wang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, and College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xue-Feng Zhang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, and College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Jun-Xi Wu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| | - Li-Hong Yu
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, and College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xiao-Han Zhang
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, and College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Shengliang Zhong
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, and College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Zi-Yi Du
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, and College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Chun-Ting He
- Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, and College of Life Science, Jiangxi Normal University, Nanchang 330022, China
| | - Xiao-Ming Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
8
|
Feng G, Wang S, Li S, Ge R, Feng X, Zhang J, Song Y, Dong X, Zhang J, Zeng G, Zhang Q, Ma G, Chuang YD, Zhang X, Guo J, Sun Y, Wei W, Chen W. Highly Selective Photoelectroreduction of Carbon Dioxide to Ethanol over Graphene/Silicon Carbide Composites. Angew Chem Int Ed Engl 2023; 62:e202218664. [PMID: 36787047 DOI: 10.1002/anie.202218664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/13/2023] [Accepted: 02/14/2023] [Indexed: 02/15/2023]
Abstract
Using sunlight to produce valuable chemicals and fuels from carbon dioxide (CO2 ), i.e., artificial photosynthesis (AP) is a promising strategy to achieve solar energy storage and a negative carbon cycle. However, selective synthesis of C2 compounds with a high CO2 conversion rate remains challenging for current AP technologies. We performed CO2 photoelectroreduction over a graphene/silicon carbide (SiC) catalyst under simulated solar irradiation with ethanol (C2 H5 OH) selectivity of>99 % and a CO2 conversion rate of up to 17.1 mmol gcat -1 h-1 with sustained performance. Experimental and theoretical investigations indicated an optimal interfacial layer to facilitate the transfer of photogenerated electrons from the SiC substrate to the few-layer graphene overlayer, which also favored an efficient CO2 to C2 H5 OH conversion pathway.
Collapse
Affiliation(s)
- Guanghui Feng
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shibin Wang
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China.,Institute of Industrial Catalysis, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310032, P. R. China
| | - Shenggang Li
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201203, P. R. China
| | - Ruipeng Ge
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201203, P. R. China
| | - Xuefei Feng
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Junwei Zhang
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Yanfang Song
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Xiao Dong
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Jiazhou Zhang
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201203, P. R. China
| | - Gaofeng Zeng
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qiang Zhang
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Guijun Ma
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201203, P. R. China
| | - Yi-De Chuang
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Xixiang Zhang
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Jinghua Guo
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yuhan Sun
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201203, P. R. China
| | - Wei Wei
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.,School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201203, P. R. China
| | - Wei Chen
- Low-Carbon Conversion Science and Engineering Center, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
9
|
Stabilization of unprecedented crystal phases of metal nanomaterials. TRENDS IN CHEMISTRY 2023. [DOI: 10.1016/j.trechm.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|