1
|
Qu J, Yang T, Zhao X, Sun C, Yuan C, Guo H, Wang C. DMAP Catalyzed Ring-Opening/Cycloaddition of Vinyl Oxiranes with Activated Ketone Compounds to Construct the 1,3-Dioxolane Skeletons. Org Lett 2024; 26:9322-9327. [PMID: 39446723 DOI: 10.1021/acs.orglett.4c03502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The present work develops a DMAP-catalyzed [3 + 2] cycloaddition of vinyl oxiranes with activated ketone compounds, affording dioxolane derivatives with moderate to excellent yields. This approach represents the first Lewis base (LB)-catalyzed ring-opening reaction of vinyl epoxides, simultaneously providing a rare oxygen-containing active intermediate in this field. The gram-scale preparation and facile derivatization of the cycloadduct highlight the significant synthetic potential of this strategy.
Collapse
Affiliation(s)
- Jiaxin Qu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P. R. China
| | - Tongtong Yang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P. R. China
| | - Xin Zhao
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P. R. China
| | - Chentong Sun
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P. R. China
| | - Chunhao Yuan
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong 271016, P. R. China
| | - Hongchao Guo
- Department of Applied Chemistry, China Agricultural University, Beijing 100193, P. R. China
| | - Chang Wang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P. R. China
| |
Collapse
|
2
|
Wu P, Zhang WT, Yang JX, Yu XY, Ni SF, Tan W, Shi F. Synthesis of Alkene Atropisomers with Multiple Stereogenic Elements via Catalytic Asymmetric Rearrangement of 3-Indolylmethanols. Angew Chem Int Ed Engl 2024; 63:e202410581. [PMID: 39039588 DOI: 10.1002/anie.202410581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Catalytic enantioselective preparation of alkene atropisomers with multiple stereogenic elements and discovery of their applications have become significant but challenging issues in the scientific community due to the unique structures of this class of atropisomers. We herein report the first catalytic atroposelective preparation of cyclopentenyl[b]indoles, a new kind of alkene atropisomers, with stereogenic point and axial chirality via an unusual rearrangement reaction of 3-indolylmethanols under asymmetric organocatalysis. Notably, this novel type of alkene atropisomers have promising applications in developing chiral ligands or organocatalysts, discovering antitumor drug candidates and fluorescence imaging materials. Moreover, the theoretical calculations have elucidated the possible reaction mechanism and the non-covalent interactions to control the enantioselectivity. This approach offers a new synthetic strategy for alkene atropisomers with multiple stereogenic elements, and represents the first catalytic enantioselective rearrangement reaction of 3-indolylmethanols, which will advance the chemistry of atropisomers and chiral indole chemistry.
Collapse
Affiliation(s)
- Ping Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Wen-Tao Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Ji-Xiang Yang
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Xian-Yang Yu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Shao-Fei Ni
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Wei Tan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Feng Shi
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
3
|
Qian J, Zhou L, Wang Y, Zhou X, Tong X. Transition from Kwon [4+2]- to [3+2]-cycloaddition enabled by AgF-assisted phosphine catalysis. Nat Commun 2024; 15:6995. [PMID: 39143094 PMCID: PMC11324788 DOI: 10.1038/s41467-024-51295-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024] Open
Abstract
Phosphine catalysis generally relies on the potential of carbanion-phosphonium zwitterions that are generated via nucleophilic addition of phosphine catalyst to electrophilic reactants. Consequently, structural modification of zwitterions using distinct electrophilic reactants has emerged as a prominent strategy to enhance catalysis diversity. Herein, we present an alternative strategy that utilizes AgF additive to expand phosphine catalysis. We find that AgF can readily transform the canonical carbanion-phosphonium zwitterion into silver enolate-fluorophosphorane intermediate, eventually furnishing a P(III)/P(V) catalytic cycle. This strategy has been successfully applied to the phosphine-catalyzed reaction of 2-substituted allenoate and imine, resulting in the transition from Kwon [4 + 2] cycloaddition to [3 + 2] cycloaddition. This [3 + 2] cycloaddition features remarkable diastereoselectivity, high yield, and broad substrate scope. Experimental and computational studies have validated the proposed mechanism. Given the prevalence of carbanion-phosphonium zwitterions in phosphine catalysis, this AgF-assisted strategy is believed to hold significant potential for advancing P(III)/P(V) catalysis.
Collapse
Affiliation(s)
- Jinlong Qian
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Lijin Zhou
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Yuyi Wang
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang, 318000, China
| | - Xiaoyu Zhou
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang, 318000, China.
| | - Xiaofeng Tong
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, Zhejiang, 318000, China.
| |
Collapse
|
4
|
Nachimuthu K, Nallasivam JL. Recent updates on vinyl cyclopropanes, aziridines and oxiranes: access to heterocyclic scaffolds. Org Biomol Chem 2024; 22:4212-4242. [PMID: 38738483 DOI: 10.1039/d4ob00246f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
This present review delineates the repertoire of vinyl cyclopropanes and their stuctural analogues to accomplish a wide array of oxa-cycles, aza-cycles, and thia-cycles under transition metal catalysis and metal-free approaches from early 2019 to the present date. The generation of electrophilic π-allyl intermediates and 1-3/1-5-dipolarophile chemistry originating from VCPs are always green, step- and atom-economical and sustainable strategies in comparsion with prefunctionalized and/or C-H activation protocols. Here, the strained ring-system extends its applicability by relieving the strain to undergo a ring-expansion reaction to accomplish 5-9 membered carbo- and heterocyclic systems. The availability of chiral ligands in the ring-expansion reaction of VCPs and their analogues has paved the way to realizing asymmetric synthetic transformations.
Collapse
Affiliation(s)
- Kiruthika Nachimuthu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tiruchirappalli-620 015, Tamil Nadu, India.
| | - Jothi Lakshmi Nallasivam
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, Tiruchirappalli-620 015, Tamil Nadu, India.
| |
Collapse
|
5
|
Maurya JP, Ramasastry SSV. Phosphine-Promoted Ring Opening/Recyclization of Cyclopropyl Ketones to Access Hydrofluorenones. Org Lett 2024; 26:2282-2286. [PMID: 38471028 DOI: 10.1021/acs.orglett.4c00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
The ring-reorganizing transformations of activated cyclopropanes are typically achieved under acidic conditions. This Letter describes the first acid-free and Lewis base-mediated cascade ring opening/recyclization of designed cyclopropyl ketones to access tetrahydrofluorenones. We rationally merged the nucleophilic features of phosphines with the electronically biased cyclopropanes to synthesize several new classes of hydrofluorenones. We have also demonstrated the synthetic utility of the products in accessing highly functionalized molecular scaffolds.
Collapse
Affiliation(s)
- Jay Prakash Maurya
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S A S Nagar, Manauli, Punjab 140 306, India
| | - S S V Ramasastry
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S A S Nagar, Manauli, Punjab 140 306, India
| |
Collapse
|
6
|
Xu Y, Liu D, Gao F, Li S, Zhang X, Wang L, Yang D. Harnessing Dpp-Imine as a Powerful Achiral Cocatalyst to Dramatically Increase the Efficiency and Stereoselectivity in a Magnesium-Mediated Oxa-Michael Reaction. JACS AU 2024; 4:164-176. [PMID: 38274262 PMCID: PMC10806778 DOI: 10.1021/jacsau.3c00584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/06/2023] [Accepted: 12/11/2023] [Indexed: 01/27/2024]
Abstract
Dpp-imines are classic model substrates for synthetic method studies. Here, we disclose their powerful use as achiral coligands in metal-catalyzed reactions. It is highly interesting to find that the Dpp-imine can not only act as powerful ligand to create excellent chiral pockets with magnesium complexes but also, more importantly, this coligand can dramatically enhance the catalytic ability of the metal catalyst. The underlying reaction mechanism was extensively explored by conducting a series of experiments, including 31P NMR studies of the coordination complex between the Dpp-imine coligand and magnesium complexes, ESI capture results, multiple control experiments, studies and comparison of different coligands, 1H NMR studies on the relationship between the substrate and Dpp-imine coligand, as well as the relationship between the substrate and the full complexes. Furthermore, DFT calculation provided valuable insights in the role of the imine additive and demonstrated that adding the Dpp-imine coligand in the magnesium catalyst can switch the deprotonation/nucleophilic addition steps from a stepwise mechanism to a concerted process during the oxa-cyclization reaction. The crucial factors responsible for the excellent enantioselectivity and enhanced reaction efficiency brought by Dpp-imine have been extracted from the calculation model. These mechanistic experiments and DFT calculation data clearly disclose and prove the powerful and interesting functions of the Dpp-imine coligand, which also direct a novel application of this type of active imine as useful ligands in metal-catalyzed asymmetric reactions.
Collapse
Affiliation(s)
- Yingfan Xu
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, School
of Basic Medical Sciences & Research Unit of Peptide Science,
2019RU066, Lanzhou University, Lanzhou 730000, Gansu, P. R. China
| | - Dan Liu
- Institute
of Systems and Physical Biology, Shenzhen
Bay Laboratory, Shenzhen 518055, P. R. China
| | - Feiyun Gao
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, School
of Basic Medical Sciences & Research Unit of Peptide Science,
2019RU066, Lanzhou University, Lanzhou 730000, Gansu, P. R. China
| | - Shixin Li
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, School
of Basic Medical Sciences & Research Unit of Peptide Science,
2019RU066, Lanzhou University, Lanzhou 730000, Gansu, P. R. China
| | - Xiaoyong Zhang
- Institute
of Systems and Physical Biology, Shenzhen
Bay Laboratory, Shenzhen 518055, P. R. China
| | - Linqing Wang
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, School
of Basic Medical Sciences & Research Unit of Peptide Science,
2019RU066, Lanzhou University, Lanzhou 730000, Gansu, P. R. China
| | - Dongxu Yang
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, School
of Basic Medical Sciences & Research Unit of Peptide Science,
2019RU066, Lanzhou University, Lanzhou 730000, Gansu, P. R. China
| |
Collapse
|
7
|
Qian J, Zhou L, Peng R, Tong X. (3+2) Annulation of 4-Acetoxy Allenoate with Aldimine Enabled by AgF-Assisted P(III)/P(V) Catalysis. Angew Chem Int Ed Engl 2024; 63:e202315188. [PMID: 37985927 DOI: 10.1002/anie.202315188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
A phosphine-catalyzed (3+2) annulation of 4-acetoxy allenoate and aldimine with the assistance of AgF is described. The success of this reaction hinges on the metathesis between the enolate-phosphonium zwitterion and AgF, leading to a key intermediate comprising of silver enolate and a fluorophosphorane P(V)-moiety. The former is able to undergo a Mannich reaction with aldimine, whereas the latter initiates a cascade sequence of AcO-elimination/aza-addition, thus furnishing the P(III)/P(V) catalysis. By taking advantage of the silver enolate, a preliminary attempt at an asymmetric variant was conducted with the combination of an achiral phosphine catalyst and a chiral bis(oxazolinyl)pyridine ligand (PyBox), giving moderate enantioselectivity.
Collapse
Affiliation(s)
- Jinlong Qian
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000 Zhejiang, China
| | - Lijin Zhou
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000 Zhejiang, China
| | - Rouxuan Peng
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000 Zhejiang, China
| | - Xiaofeng Tong
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou, 318000 Zhejiang, China
| |
Collapse
|
8
|
Tang Y, Shi W, Du J, Ren Y, Xiao Y, Guo H. Diastereoselective Synthesis of Allenes through Phosphine-Catalyzed Cascade Isomerization/Annulation. Org Lett 2023. [PMID: 38019529 DOI: 10.1021/acs.orglett.3c03283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Phosphine-catalyzed cascade isomerization/annulation has been developed to realize a diastereoselective synthesis of allenes installed on the hexahydropentalene skeleton, which contains five chiral centers (and one axial chirality). This reaction tolerated a broad range of allenoates and enynes. The allene products were transformed to various halogen-substituted fused-ring compounds.
Collapse
Affiliation(s)
- Yi Tang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Wangyu Shi
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Juan Du
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Yue Ren
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Yumei Xiao
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
9
|
Lu JL, Zhang Z, Deng JT, Ma AJ, Peng JB. Molybdenum-Mediated Reductive Hydroamination of Vinylcyclopropanes with Nitroarenes: Synthesis of Homoallylamines. Org Lett 2023; 25:2991-2995. [PMID: 37126019 DOI: 10.1021/acs.orglett.3c00781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
A molybdenum-mediated reductive hydroamination of vinylcyclopropanes with nitroarenes has been developed. A broad range of substituted homoallylamines were prepared in good to excellent yields from readily available starting materials. No noble metal catalysts were used in this reaction, and Mo(CO)6 acted as both catalyst and reductant. This protocol provides an effective method for the selective synthesis of substituted homoallylamines from easily available nitroarenes.
Collapse
Affiliation(s)
- Jin-Liang Lu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Zhi Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Jing-Tong Deng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Ai-Jun Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| | - Jin-Bao Peng
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, P. R. China
| |
Collapse
|
10
|
Biswas K, Khamrai A, Malik S, Ganesh V. Organophosphorus-Catalyzed Borylative Ring-Opening of Vinylcyclopropanes: A Stereoselective Route to δ-Valerolactones. Org Lett 2023; 25:1805-1810. [PMID: 36919935 DOI: 10.1021/acs.orglett.2c04284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
We report an operationally simple route to δ-valerolactones through an organophosphorus-catalyzed borylative ring-opening/allylation of vinylcyclopropanes providing δ-hydroxy esters stereoselectively. The δ-hydroxy esters were lactonized to obtain densely substituted δ-valerolactones. The present methodology exhibited enhanced functional group tolerance compared to the existing metal-mediated methods. A plausible mechanism for borylative ring-opening reaction has been suggested. 31P NMR studies indicated the involvement of a phosphonium zwitterionic species. The synthetic utility of the intermediate allyl boronates was demonstrated.
Collapse
Affiliation(s)
- Krishna Biswas
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal-721302, India
| | - Aankhi Khamrai
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal-721302, India
| | - Subrata Malik
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal-721302, India
| | - Venkataraman Ganesh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal-721302, India
| |
Collapse
|
11
|
Xiang Alvin Tan C, Li R, Zhang F, Dai L, Ullah N, Lu Y. Synthesis of Axially Chiral CF
3
‐Substituted 2‐Arylpyrroles by Sequential Phosphine‐Catalyzed Asymmetric [3+2] Annulation and Oxidative Central‐to‐Axial Chirality Transfer. Angew Chem Int Ed Engl 2022; 61:e202209494. [DOI: 10.1002/anie.202209494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Indexed: 11/16/2022]
Affiliation(s)
- Chuan Xiang Alvin Tan
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Integrative Sciences & Engineering Programme (ISEP) National University of Singapore 28 Medical Drive Singapore 117456 Singapore
| | - Rui Li
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou Fujian 350207 China
| | - Fuhao Zhang
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Lei Dai
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
| | - Nisar Ullah
- Chemistry Department King Fahd University of Petroleum & Minerals Dhahran 31261 Saudi Arabia
| | - Yixin Lu
- Department of Chemistry National University of Singapore 3 Science Drive 3 Singapore 117543 Singapore
- Integrative Sciences & Engineering Programme (ISEP) National University of Singapore 28 Medical Drive Singapore 117456 Singapore
- Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City, Fuzhou Fujian 350207 China
| |
Collapse
|
12
|
He X, Ma P, Tang Y, Li J, Shen S, Lear MJ, Houk KN, Xu S. Phosphine-catalyzed activation of cyclopropenones: a versatile C 3 synthon for (3+2) annulations with unsaturated electrophiles. Chem Sci 2022; 13:12769-12775. [PMID: 36519051 PMCID: PMC9645381 DOI: 10.1039/d2sc04092a] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/13/2022] [Indexed: 10/03/2023] Open
Abstract
We herein report a phosphine-catalyzed (3 + 2) annulation of cyclopropenones with a wide variety of electrophilic π systems, including aldehydes, ketoesters, imines, isocyanates, and carbodiimides, offering products of butenolides, butyrolactams, maleimides, and iminomaleimides, respectively, in high yields with broad substrate scope. An α-ketenyl phosphorous ylide is validated as the key intermediate, which undergoes preferential catalytic cyclization with aldehydes rather than stoichiometric Wittig olefinations. This phosphine-catalyzed activation of cyclopropenones thus supplies a versatile C3 synthon for formal cycloadditon reactions.
Collapse
Affiliation(s)
- Xin He
- School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Pengchen Ma
- School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Department of Chemistry and Biochemistry, University of California Los Angeles California 90095-1569 USA
| | - Yuhai Tang
- School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Jing Li
- School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Shenyu Shen
- School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Martin J Lear
- School of Chemistry, University of Lincoln Brayford Pool Lincoln LN6 7TS UK
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California Los Angeles California 90095-1569 USA
| | - Silong Xu
- School of Chemistry, and Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University Xi'an 710049 P. R. China
| |
Collapse
|
13
|
Meng L, Liu H, Lin Z, Wang J. Synthetic and Computational Study of the Enantioselective [3+2]-Cycloaddition of Chromones with MBH Carbonates. Org Lett 2022; 24:5890-5895. [PMID: 35925800 DOI: 10.1021/acs.orglett.2c01922] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Highly efficient and straightforward access to enantioenriched five-membered ring-fused chromanones is developed via [3+2]-cycloaddition of 3-cyanochromones with Morita-Baylis-Hillman carbonates. Densely functionalized chiral cyclopenta[b]chromanones with three continuous quaternary and tertiary stereogenic carbon centers were obtained in high yields with high ee and dr (≤97% yield, 97% ee, and >20:1 dr). Moreover, density functional theory calculations have been carried out to investigate the mechanism and regio- and diastereoselectivity of the reaction.
Collapse
Affiliation(s)
- Ling Meng
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China.,Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong 999077, China.,Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China.,Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518000, P. R. China
| | - Heyang Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Jun Wang
- Department of Chemistry, Hong Kong Baptist University, Hong Kong 999077, China.,Institute for Research and Continuing Education, Hong Kong Baptist University, Shenzhen 518000, P. R. China
| |
Collapse
|
14
|
Chen P, Huang PF, Xiong BQ, Huang HW, Tang KW, Liu Y. Visible-Light-Induced Decarboxylative Alkylation/Ring Opening and Esterification of Vinylcyclopropanes. Org Lett 2022; 24:5726-5730. [PMID: 35920748 DOI: 10.1021/acs.orglett.2c02151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A visible-light-induced four-component reaction of vinylcyclopropanes, N-(acyloxy)phthalimide esters, N,N-dimethylformamide (DMF), and H2O through an oxidative ring opening of cyclopropane is presented. This procedure provides a new and effective way to construct formate esters. DMF is employed as both a solvent and the source of CHO. This difunctionalization of vinylcyclopropanes shows good functional group tolerance under room temperature. A radical pathway is involved, and carbonyl oxygen of ester originated from water in this transformation.
Collapse
Affiliation(s)
- Pu Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, People's Republic of China.,Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Peng-Fei Huang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, People's Republic of China
| | - Bi-Quan Xiong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, People's Republic of China
| | - Hua-Wen Huang
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, Hunan 411105, People's Republic of China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, People's Republic of China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang, Hunan 414006, People's Republic of China
| |
Collapse
|
15
|
Wang N, Lang Y, Wang J, Wu Z, Lu Y. Phosphine-Catalyzed Sequential [3 + 2]/[3 + 2] Annulation between Allenoates and Arylidenemalononitriles for the Enantioselective Construction of Bicyclo[3,3,0]octenes and Cyclopenta[ c]quinolinones. Org Lett 2022; 24:3712-3716. [PMID: 35584054 DOI: 10.1021/acs.orglett.2c01352] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A highly diastereo- and enantioselective phosphine-catalyzed sequential [3 + 2]/[3 + 2] annulation of allenoates with arylidenemalononitriles has been developed. This reaction allows for the facile construction of multifunctionalized cis-fused bicyclic[3,3,0]octene scaffolds, encompassing three consecutive stereogenic centers with one quaternary carbon center, in a one-step operation from readily available materials. The reported protocol is scalable, operates under mild reaction conditions, and creates the core structural motif of a number of natural products.
Collapse
Affiliation(s)
- Nengzhong Wang
- Hubei Key Laboratory of Natural Products Research and Development, Key Laboratory of Functional Yeast (China National Light Industry), College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Yimin Lang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Junjie Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Bin-hai New City, Fuzhou, Fujian 350207, China
| | - Zugen Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543
| | - Yixin Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543.,Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Bin-hai New City, Fuzhou, Fujian 350207, China
| |
Collapse
|
16
|
Dong W, Tian K, Dong X, Wang C. Design, Synthesis and Application of Multifunctional Chiral Ami‐nophosphine Catalyst for Highly Efficient Catalyst for Asymmetric Intermolecular Cross
Rauhut‐Currier
Reaction. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Wu‐Wei Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| | - Kui Tian
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Xiu‐Qin Dong
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
- Suzhou Institute of Wuhan University Suzhou Jiangsu 215123 P. R. China
| | - Chun‐Jiang Wang
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry Shanghai 230021 China
| |
Collapse
|