1
|
Li YX, Liu QY, Zhang Y, Liu MM, Liu X, Shen MH, Wang FM, Xu HD. α-( N-Alkyl-N-heteroarenium)-α-diazoacetates: synthesis and reactivity of a novel class of 'onium' diazo compounds. Org Biomol Chem 2024; 22:8109-8113. [PMID: 39291542 DOI: 10.1039/d4ob01056f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Treatment of alkyl α-(N-heteroaryl)-α-diazoacetates with alkylating reagents affords diazoacetate N-heteroarenium salts. These novel 'onium' diazo compounds are mostly yellow solids, displaying increased thermal and acid stability. Their tetrafluoroborates undergo rhodium catalyzed [2 + 1] and Doyle-Kirmse reactions under mild conditions, suggesting the N-quaternization an effective means of elimination of N-coordination caused catalyst toxicity.
Collapse
Affiliation(s)
- Ya-Xi Li
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| | - Quan-Yun Liu
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| | - Yi Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Miao-Miao Liu
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| | - Xiaoqian Liu
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| | - Mei-Hua Shen
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| | - Fang-Ming Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Hua-Dong Xu
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
2
|
Arribas A, Calvelo M, Rey A, Mascareñas JL, López F. Skeletal and Mechanistic Diversity in Ir-Catalyzed Cycloisomerizations of Allene-Tethered Pyrroles and Indoles. Angew Chem Int Ed Engl 2024; 63:e202408258. [PMID: 38837581 DOI: 10.1002/anie.202408258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/26/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
Pyrroles and indoles bearing N-allenyl tethers participate in a variety of iridium-catalyzed cycloisomerization processes initiated by a C-H activation step, to deliver a diversity of synthetically relevant azaheterocyclic products. By appropriate selection of the ancillary ligand and the substitution pattern of the allene, the reactions can diverge from simple intramolecular hydrocarbonations to tandem processes involving intriguing mechanistic issues. Accordingly, a wide range of heterocyclic structures ranging from dihydro-indolizines and pyridoindoles to tetrahydroindolizines, as well as cyclopropane-fused tetrahydroindolizines can be obtained. Moreover, by using chiral ligands, these cascade processes can be carried out in an enantioselective manner. DFT studies provide insights into the underlying mechanisms and justify the observed chemo- regio- and stereoselectivities.
Collapse
Affiliation(s)
- Andrés Arribas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Martín Calvelo
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Alejandro Rey
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - José L Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Misión Biológica de Galicia (MBG), Consejo Superior de Investigaciones Científicas (CSIC), 36680, Pontevedra, Spain
| |
Collapse
|
3
|
Hussain A, Peraka S, Ramachary DB. Organocatalytic Reductive Amination of the Chiral Formylcyclopropanes: Scope and Applications. J Org Chem 2023; 88:16047-16064. [PMID: 37948127 DOI: 10.1021/acs.joc.3c01074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
We developed a sustainable three-component reductive amination protocol for the chemoselective coupling of optically active functionally rich donor-acceptor carbonyl-cyclopropanes with various amines under 10 mol % of diphenyl phosphate in the presence of Hantzsch ester as a hydride source. The catalytic selective reductive C-N coupling has wide advantages like no epimerization, no ring opening, large substrate scope, generating only mono N-alkylation products and simultaneously resulting in chiral cyclopropane-containing amines possessing many applications in the medicinal chemistry. In this article, we have shown the synthetic applications of reductive C-N coupling reaction to make chiral α-carbonyl-cyclopropane containing amines 8, double C-N coupled cyclopropane-amines 10, unusual C-N/C-C coupled cyclopropane-amines 12, chiral tert-butylsulfinamide containing cyclopropanes 14/15, and functionally rich chiral cyclopropane-fused N-heterocycles 16/18/19. Many of these chiral cyclopropane-amines 5-19 can serve as building blocks for the synthesis of drug-like small molecules, natural products, pharmaceuticals, and their analogues.
Collapse
Affiliation(s)
- Akram Hussain
- Catalysis Laboratory, School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - Swamy Peraka
- Catalysis Laboratory, School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | | |
Collapse
|
4
|
George V, König B. Photogenerated donor-donor diazo compounds enable facile access to spirocyclopropanes. Chem Commun (Camb) 2023; 59:11835-11838. [PMID: 37712256 DOI: 10.1039/d3cc03581f] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Prompted by the increasing interest in strained hydrocarbons as potential drug candidates, we developed a simple and efficient photochemical protocol for (spiro)cyclopropanes from bench stable tosylhydrazones and electron poor olefins. This two-step one-pot transformation proceeds by (3+2)-cycloaddition of in situ formed donor-donor diazo compounds, followed by nitrogen extrusion of the Δ1-pyrazoline intermediates. Notably, kinetic analysis enabled the isolation of intermediary spiro-heterocycles.
Collapse
Affiliation(s)
- Vincent George
- Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg 93040, Germany.
| | - Burkhard König
- Faculty of Chemistry and Pharmacy, University of Regensburg, Universitätsstraße 31, Regensburg 93040, Germany.
| |
Collapse
|
5
|
Poudel DP, Pokhrel A, Tak RK, Shankar M, Giri R. Photosensitized O 2 enables intermolecular alkene cyclopropanation by active methylene compounds. Science 2023; 381:545-553. [PMID: 37535731 PMCID: PMC11216814 DOI: 10.1126/science.adg3209] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 06/26/2023] [Indexed: 08/05/2023]
Abstract
Cyclopropanes are key features in many preclinical, clinical, and commercial drugs, as well as natural products. The most prolific technique for their synthesis is the metal-catalyzed reaction of an alkene with a diazoalkane, a highly energetic reagent requiring stringent safety precautions. Discovery of alternative innocuous reagents remains an ongoing challenge. Herein, we report a simple photoredox-catalyzed intermolecular cyclopropanation of unactivated alkenes with active methylene compounds. The reaction proceeds in neutral solvent under air or dioxygen (O2) with a photoredox catalyst excited by blue light-emitting diode light and an iodine co-catalyst that is either added as molecular iodine or generated in situ from alkyl iodides. Mechanistic investigations indicate that photosensitized O2 plays a vital role in the generation of carbon-centered radicals for both the addition of active methylene compounds to alkenes and the ring closure.
Collapse
Affiliation(s)
- Dhruba P. Poudel
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | | | | | - Majji Shankar
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Ramesh Giri
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802
| |
Collapse
|
6
|
Li J, Zhang Z, Chen L, Li M, Zhang X, Zhang G. Base-Promoted Intramolecular Addition of Vinyl Cyclopropanecarboxamides to Access Conformationally Restricted Aza[3.1.0]bicycles. Molecules 2023; 28:molecules28093691. [PMID: 37175101 PMCID: PMC10179847 DOI: 10.3390/molecules28093691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 04/22/2023] [Accepted: 04/22/2023] [Indexed: 05/15/2023] Open
Abstract
3-Azabicyclo[3.1.0]hexanes are common structural components in natural products and bioactive compounds. Traditionally, the metal-mediated cyclopropanation domino reaction of chain enzymes is the most commonly used strategy for the construction of this type of aza[3.1.0]bicycle derivative. In this study, a base-promoted intramolecular addition of alkenes used to deliver conformationally restricted highly substituted aza[3.1.0]bicycles is reported. This reaction was tailor-made for saturated aza[3.1.0] bicycle-containing fused bicyclic compounds that may be applied in the development of concise and divergent total syntheses of bioactive compounds.
Collapse
Affiliation(s)
- Jingya Li
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Zhiguo Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Liming Chen
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Mengjuan Li
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Xingjie Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
7
|
Diazo compounds: Recent applications in synthetic organic chemistry and beyond. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|