1
|
Hu D, Huang R, Fang Y. Recent Advances in Tetra-Coordinate Boron-Based Photoactive Molecules for Luminescent Sensing, Imaging, and Anticounterfeiting. PRECISION CHEMISTRY 2025; 3:10-26. [PMID: 39886375 PMCID: PMC11775856 DOI: 10.1021/prechem.4c00072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 02/01/2025]
Abstract
Tetra-coordinate boron-based fluorescent materials hold considerable promise across chemistry, biology and materials science due to their unique and precisely tunable optoelectronic properties. The incorporation of the heteroatom boron (B) enables these materials to exhibit high luminescence quantum yields, adjustable absorption and emission wavelengths, and exceptional photostability. This review examines the molecular design and applications of tetra-coordinate boron-based photoactive molecules, highlighting their roles in fluorescence sensing, anticounterfeiting, and imaging. We outline how structural features impact their properties and discuss strategies for enhancing their performance, including ligand modification and the extension of conjugation length, among others. Additionally, future research focus in this field is also addressed including strategies for diversifying molecular structures and enhancing molecular stability, which is believed to pave the way for innovative solutions to the challenges in areas such as sensing, imaging and information security.
Collapse
Affiliation(s)
- Dingfang Hu
- Key Laboratory of Applied Surface and
Colloid Chemistry of Ministry of Education, School of Chemistry and
Chemical Engineering, Shaanxi Normal University, Xi’an 710119, P. R. China
| | - Rongrong Huang
- Key Laboratory of Applied Surface and
Colloid Chemistry of Ministry of Education, School of Chemistry and
Chemical Engineering, Shaanxi Normal University, Xi’an 710119, P. R. China
| | - Yu Fang
- Key Laboratory of Applied Surface and
Colloid Chemistry of Ministry of Education, School of Chemistry and
Chemical Engineering, Shaanxi Normal University, Xi’an 710119, P. R. China
| |
Collapse
|
2
|
Dong J, Chen L, Feng Q, Yang DT. Near-Infrared-Emitting Helically Twisted Conjugated Frameworks Consisting of Alternant Donor-π-Acceptor Units and Multiple Boron Atoms. Angew Chem Int Ed Engl 2025; 64:e202417200. [PMID: 39363682 DOI: 10.1002/anie.202417200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/05/2024]
Abstract
A novel design strategy to construct bright and narrow near-infrared (NIR) emission materials with suppressed shoulder peaks can significantly enhance their performance in various applications. Herein, we have successfully synthesized a series of helically twisted D-π-A conjugated systems bridged by boron atoms, achieving bright red to near-infrared (NIR) emissions with notably narrow full-width at half-maximum (FWHM) values of 35 nm (0.08 eV) and photoluminescence quantum yields (PLQY) up to 80 %. These compounds display red-shifted emissions up to 753 nm in higher concentrations. Cis/trans configurational isomers of multi-boron-bridged molecule BN3 exhibit similar photophysical properties. The unique combination of boron-induced coordination-enhanced charge transfer (CE-CT) and the helically twisted conjugated framework is pivotal in achieving the red-shifted, narrowband emission. X-ray crystallographic analysis of BN2 and BN3-a reveals that the extension of boron-bridged D-π-A skeletons significantly increases the distortion of the skeleton. Systematic theoretical calculations show how the boron CE-CT mechanism, in conjunction with the helical twist, leads to the narrowing of emission bands while simultaneously red-shifting them into the NIR region. This work could open new avenues for the development of advanced materials with tailored optical properties, particularly in the challenging and highly sought-after NIR spectrum.
Collapse
Affiliation(s)
- Jiaqi Dong
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Lingjuan Chen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Qingliang Feng
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Deng-Tao Yang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
- Xi'an Key Laboratory of Hybrid Luminescent Materials and Photonic Device, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| |
Collapse
|
3
|
Wang H, Gao Y, Chen J, Fan XC, Shi YZ, Yu J, Wang K, Li S, Lee CS, Zhang X. Versatile Thermally Activated Delayed Fluorescence Material Enabling High Efficiencies in both Photodynamic Therapy and Deep-Red/NIR Electroluminescence. ACS NANO 2025; 19:2549-2558. [PMID: 39787293 DOI: 10.1021/acsnano.4c14129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Thermally activated delayed fluorescence (TADF) materials have received increasing attention from organic electronics to other related fields, such as bioapplications and photocatalysts. However, it remains a challenging task for TADF emitters to showcase the versatility concurrent with high performance in multiple applications. Herein, we first present such a proof-of-concept TADF material, namely, QCN-SAC, through strategically manipulating exciton dynamics. On the one hand, QCN-SAC displays obvious aggregate-induced deep-red/near-infrared emission with a high radiative rate beyond 107 s-1, thereby demonstrating nearly 100% exciton utilization under oxygen-free conditions. In a QCN-SAC-based nondoped organic light-emitting diode (OLED), a superb external quantum efficiency of 16.4% can be reached with a peak at 708 nm. On the other hand, QCN-SAC also exhibits a high intersystem crossing rate over 108 s-1 without leveraging the heavy-atom effect, which makes QCN-SAC-based nanoparticles perform well in boosting reactive oxygen species generation for imaging-guided photodynamic therapy (PDT). This work presents a fundamental principle for designing high-performance all-in-one TADF molecules for OLED and PDT applications. This discovery holds promise for advancing the development of versatile TADF materials with a range of uses in the near future.
Collapse
Affiliation(s)
- Hui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yijian Gao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jiaxiong Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| | - Xiao-Chun Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Yi-Zhong Shi
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, China
| | - Shengliang Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, Jiangsu, China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF) and Department of Chemistry, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xiaohong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, Jiangsu, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
4
|
Dos Santos JM, Hall D, Basumatary B, Bryden M, Chen D, Choudhary P, Comerford T, Crovini E, Danos A, De J, Diesing S, Fatahi M, Griffin M, Gupta AK, Hafeez H, Hämmerling L, Hanover E, Haug J, Heil T, Karthik D, Kumar S, Lee O, Li H, Lucas F, Mackenzie CFR, Mariko A, Matulaitis T, Millward F, Olivier Y, Qi Q, Samuel IDW, Sharma N, Si C, Spierling L, Sudhakar P, Sun D, Tankelevičiu Tė E, Duarte Tonet M, Wang J, Wang T, Wu S, Xu Y, Zhang L, Zysman-Colman E. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem Rev 2024; 124:13736-14110. [PMID: 39666979 DOI: 10.1021/acs.chemrev.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond. Following from our previous review in 2017 ( Adv. Mater. 2017, 1605444), we here comprehensively document subsequent advances made in TADF materials design and their uses from 2017-2022. Correlations highlighted between structure and properties as well as detailed comparisons and analyses should assist future TADF materials development. The necessarily broadened breadth and scope of this review attests to the bustling activity in this field. We note that the rapidly expanding and accelerating research activity in TADF material development is indicative of a field that has reached adolescence, with an exciting maturity still yet to come.
Collapse
Affiliation(s)
- John Marques Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Biju Basumatary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Megan Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Praveen Choudhary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Andrew Danos
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Joydip De
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Mahni Fatahi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Máire Griffin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Hassan Hafeez
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Lea Hämmerling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Emily Hanover
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Janine Haug
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Tabea Heil
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Durai Karthik
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Oliver Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Haoyang Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Fabien Lucas
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | | | - Aminata Mariko
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Quan Qi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Nidhi Sharma
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Leander Spierling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Eglė Tankelevičiu Tė
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Michele Duarte Tonet
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| |
Collapse
|
5
|
Wang J, Lai X, Zhou Y, Hua L, Zhu W, Duan P, Wang Y. An effective orange-red solution-processed circularly polarized organic light-emitting diode. Chem Commun (Camb) 2024; 60:14196-14199. [PMID: 39530567 DOI: 10.1039/d4cc04938a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A pair of circularly polarized thermally activated delayed fluorescence (CP-TADF) materials (R)-ad-PXZ/(S)-ad-PXZ were obtained, which show orange-red emission at 602 nm and clear chiroptical properties both in solution and the solid state. The solution processable circularly polarized device exhibits the maximum external quantum efficiency of 9.0% and gEL value of 10-3.
Collapse
Affiliation(s)
- Junqing Wang
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, P. R. China.
| | - Xiaoyi Lai
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, P. R. China.
| | - Yongzhi Zhou
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, P. R. China.
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Lei Hua
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, P. R. China.
| | - Weiguo Zhu
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, P. R. China.
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11, ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Yafei Wang
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, P. R. China.
| |
Collapse
|
6
|
Ge L, Zhang W, Hao YH, Li M, Liu Y, Zhou M, Cui LS. Efficient and Stable Narrowband Pure-Red Light-Emitting Diodes with Electroluminescence Efficiencies Exceeding 43. J Am Chem Soc 2024; 146:32826-32836. [PMID: 39535967 DOI: 10.1021/jacs.4c13375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Advanced multiresonance-induced thermally activated delayed fluorescence (MR-TADF) materials exhibit exceptional promise for applications in state-of-the-art organic light-emitting diodes (OLEDs) owing to their unique narrowband emissions and high luminescent efficiencies. Despite substantial progress with blue and green MR-TADF materials, the development of pure-red MR-TADF emitters has lagged behind, thereby hindering the advancement toward high-performance ultrahigh-definition OLED displays. Here, we propose an effective approach for designing pure-red MR-TADF molecules based on the integration of secondary electron-donating units and π-skeleton extension into MR cores, which enables not only a redshift of narrowband emission but also an acceleration of reverse intersystem crossing (RISC) rate. The proof-of-the-concept emitter BNTPA showcases a bright and saturated red emission centered at 613 nm with a full-width at half-maximum of 0.14 eV, together with a more than twofold increase in the RISC rate. As a result, TADF OLEDs based on BNTPA achieved a record maximum external quantum efficiency (EQEmax) of up to 35.2% with Commission Internationale de l'Eclairage (CIE) coordinates of (0.657, 0.343), approaching the coordinates of the National Television Standards Committee (NTSC) red standard. Moreover, phosphor-assisted fluorescence devices exploiting BNTPA as a terminal emitter exhibit an exceptional EQEmax of 43.3%, accompanied by improved operational stability.
Collapse
Affiliation(s)
- Lishuang Ge
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi-Hong Hao
- School of Instrument Science and Optoelectronic Engineering, Beijing Information Science & Technology University, Beijing 100192, China
| | - Ming Li
- Instruments Center for Physical Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuan Liu
- School of Instrument Science and Optoelectronic Engineering, Beijing Information Science & Technology University, Beijing 100192, China
| | - Meng Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lin-Song Cui
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
7
|
Kutsiy S, Volyniuk D, Sahoo SR, Ceborska M, Wisniewska A, Stakhira P, Grazulevicius JV, Baryshnikov GV, Potopnyk MA. Sterically Tuned Ortho-Phenylene-Linked Donor-Acceptor Benzothiazole-Based Boron Difluoride Complexes as Thermally-Activated Delayed Fluorescence Emitters for Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60633-60647. [PMID: 39436774 PMCID: PMC11551907 DOI: 10.1021/acsami.4c12662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/12/2024] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
Two donor-acceptor dyes with an ortho-phenylene-linked carbazole electron donor and a benzothiazole-fused boron heterocyclic acceptor were designed, synthesized, and spectroscopically investigated. Due to the steric effects of boron heterocyclic units, the dyes demonstrate different conformations in the crystalline state. The presence of numerous hydrogen-bonding intermolecular interactions and the very weak π-π stacking in the molecular packing results in intense solid-state emission with photoluminescence quantum yields of 40 and 18% for crystals and 50 and 42% for host-based light-emitting layers. The compounds show aggregation-induced emission and thermally activated delayed fluorescence (TADF). The received ionization potential and electron affinity values suggested good charge-injecting ability and bipolar charge-transporting properties of the developed dyes. Transport of holes and electrons was detected in layers of one dye by the time-of-flight measurements. The benzothiazole-based boron difluoride complexes showed high electron mobility of 1.5 × 10-4 and 0.7 × 10-4 cm2 V-1 s-1 at an electric field of 1.35 × 106 V cm-1. Therefore, these dyes were successfully applied as emitters in organic light-emitting diodes with external quantum efficiencies of 15 and 13%, respectively. Our study marks a critical advancement in the area of solid-state emissive boron difluoride dyes, which can be applied as TADF emitters into organic light-emitting diodes. The obtained results reveal that the orientation of the acceptor unit in the ortho-phenylene-linked donor-acceptor dyes makes a significant impact on the TADF activity.
Collapse
Affiliation(s)
- Stepan Kutsiy
- Institute
of Organic Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Department
of Electronic Devices, Lviv Polytechnic
National University, 1 Sviatoho Yura sq., Lviv 79013, Ukraine
| | - Dmytro Volyniuk
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, Barsausko 59, LT-51423 Kaunas, Lithuania
| | - Smruti Ranjan Sahoo
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping SE-60174, Sweden
- Department
of Physics and Astronomy, Uppsala University
Box 516, SE-75120 Uppsala, Sweden
| | - Magdalena Ceborska
- Faculty of
Mathematics and Natural Sciences, Cardinal
Stefan Wyszynski University in Warsaw, K. Woycickiego 1/3, 01-938 Warsaw, Poland
| | - Agnieszka Wisniewska
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Pavlo Stakhira
- Department
of Electronic Devices, Lviv Polytechnic
National University, 1 Sviatoho Yura sq., Lviv 79013, Ukraine
| | - Juozas Vidas Grazulevicius
- Department
of Polymer Chemistry and Technology, Kaunas
University of Technology, Barsausko 59, LT-51423 Kaunas, Lithuania
| | - Glib V. Baryshnikov
- Laboratory
of Organic Electronics, Department of Science and Technology, Linköping University, Norrköping SE-60174, Sweden
| | - Mykhaylo A. Potopnyk
- Institute
of Organic Chemistry, Polish Academy of
Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Institute
of Organic Chemistry, National Academy of
Sciences of Ukraine, Akademika Kuharya Str. 5, 02000 Kyiv, Ukraine
| |
Collapse
|
8
|
Hao XY, Wang H, Zhang X, Yu J, Wang K, Zhang XH. Introducing Internal Host Component to Thermally Activated Delayed Fluorescence Emitter for Efficient NIR Nondoped Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28949-28957. [PMID: 38768497 DOI: 10.1021/acsami.4c01637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Developing thermally activated delayed fluorescence (TADF) near-infrared (NIR) organic light-emitting diodes (OLEDs) based on nondoped emitting layers is intriguing yet challenging, limited by low exciton utilization and notorious concentration quenching. Herein, a facile strategy is proposed to address this issue by incorporating an internal host component onto a traditional donor (D)-acceptor (A)-type red TADF molecule. A proof-of-concept emitter with an internal host is accordingly developed as well as a control one without an internal host. In the case of their monomer states, both emitters exhibit similar emission spectra due to their identical D-A pairs. However, under nondoped conditions, significant improvement in exciton utilization and quenching-resistant features are observed for the molecule with the internal host. The corresponding nondoped OLED yielded a maximum external quantum efficiency of 2.4%, with NIR emission peaking at 765 nm, which was a nearly 10-fold improvement relative to the efficiency based on the control molecule without an internal host. To the best of our knowledge, this result is on par with those of state-of-the art nondoped NIR TADF OLEDs in a similar emission region. These results offer a feasible pathway for the design and development of high-efficiency NIR nondoped OLEDs.
Collapse
Affiliation(s)
- Xiao-Yao Hao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Hui Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xi Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Jia Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Kai Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| | - Xiao-Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou 215123, Jiangsu, P. R. China
| |
Collapse
|
9
|
Ni F, Huang Y, Qiu L, Yang C. Synthetic progress of organic thermally activated delayed fluorescence emitters via C-H activation and functionalization. Chem Soc Rev 2024; 53:5904-5955. [PMID: 38717257 DOI: 10.1039/d3cs00871a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Thermally activated delayed fluorescence (TADF) emitters have become increasingly prominent due to their promising applications across various fields, prompting a continuous demand for developing reliable synthetic methods to access them. This review aims to highlight the progress made in the last decade in synthesizing organic TADF compounds through C-H bond activation and functionalization. The review begins with a brief introduction to the basic features and design principles of TADF emitters. It then provides an overview of the advantages and concise development of C-H bond transformations in constructing TADF emitters. Subsequently, it summarizes both transition-metal-catalyzed and non-transition-metal-promoted C-H bond transformations used for the synthesis of TADF emitters. Finally, the review gives an outlook on further challenges and potential directions in this field.
Collapse
Affiliation(s)
- Fan Ni
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Yipan Huang
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Longzhen Qiu
- National Engineering Lab of Special Display Technology, State Key Lab of Advanced Display Technology, Academy of Opto-Electronic Technology, Intelligent Interconnected Systems Laboratory of Anhui, Anhui Province Key Laboratory of Measuring Theory and Precision Instrument, School of Instrument Science and Optoelectronic Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China.
| |
Collapse
|
10
|
Yin X, Huang H, Li N, Li W, Mo X, Huang M, Chen G, Miao J, Yang C. Integration of fine-tuned chiral donor with hybrid long/short-range charge-transfer for high-performance circularly polarized electroluminescence. MATERIALS HORIZONS 2024; 11:1752-1759. [PMID: 38291904 DOI: 10.1039/d3mh02146g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
The synergistic integration of a fine-tuned chiral donor with a hybrid long/short-range charge-transfer mechanism offers an accessible pathway to construct highly efficient circularly polarized emitters. Consequently, a notable dissymmetry factor of 1.6 × 10-3, concomitantly with a record-setting maximum external quantum efficiency of 37.4%, is synchronously realized within a single embodiment.
Collapse
Affiliation(s)
- Xiaojun Yin
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Haoxin Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Nengquan Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Wendi Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Xuechao Mo
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Manli Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Guohao Chen
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China.
| |
Collapse
|
11
|
He B, Zhong Q, Dong Q, Yang X, Cowling SJ, Qiao W, Bruce DW, Zhu W, Duan P, Wang Y. Liquid-crystalline circularly polarised TADF emitters for high-efficiency, solution-processable organic light-emitting diodes. MATERIALS HORIZONS 2024; 11:1251-1260. [PMID: 38131645 DOI: 10.1039/d3mh01736b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Achieving a high emission efficiency and a large luminescence asymmetry factor (glum) in a single molecule exhibiting circularly polarised thermally activated delayed fluorescence (CP-TADF) remains a formidable challenge. In this work, a proof-of-concept, liquid-crystalline CP-TADF molecule is proposed to realise high glum by taking advantage of the order inherent in liquid crystals. Employing a chiral dinaphthol-based CP-TADF molecule as the emissive unit, a pair of liquid-crystalline CP-TADF molecules (R/S-4) is synthesised via the introduction of six mesogenic moieties. The enantiomers show intense emission at about 520 nm which has clear TADF and liquid-crystalline characteristics. Both enantiomers display symmetrical electronic circular dichroism (CD) and circular polarisation luminescence (CPL) signals as thin films. Impressively, relatively large glum values of 0.11 are realised for the films. Solution-processed devices were fabricated using R/S-4 as the dopants, with the TADF molecule CzAcSF as the sensitiser. The OLEDs so prepared show a very high maximum external quantum efficiency of 21.2%, revealing a novel strategy for realising large glum values in CP-TADF.
Collapse
Affiliation(s)
- Binghong He
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, P. R. China.
| | - Qihang Zhong
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, P. R. China.
| | - Qiwei Dong
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, P. R. China.
| | - Xuefeng Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Stephen J Cowling
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Wenjian Qiao
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, P. R. China.
- Zaozhuang Reinno Optoelectronic Information Co., Ltd., China
| | - Duncan W Bruce
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK.
| | - Weiguo Zhu
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, P. R. China.
| | - Pengfei Duan
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology (NCNST), No. 11 ZhongGuanCun BeiYiTiao, Beijing 100190, P. R. China.
| | - Yafei Wang
- School of Materials Science & Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, P. R. China.
| |
Collapse
|
12
|
Jiang A, Cui H, Zhang L, Cao C, Dai H, Lu C, Ge C, Lu H, Wu ZG. Functionalization of the Octahydro-Binaphthol Skeleton: A Universal Strategy for Directly Constructing D-A Type Axially Chiral Biphenyl Luminescent Molecules. J Org Chem 2024; 89:3605-3611. [PMID: 38364322 DOI: 10.1021/acs.joc.3c02600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
D-A type axially chiral biphenyl luminescent molecules are directly constructed through ingenious functionalization of the octahydro-binaphthol skeleton without optical resolution. The circularly polarized organic light-emitting diodes based on them display remarkable circularly polarized electroluminescence emission, a high luminance of >10 000 cd m-2, a maximum external quantum efficiency of 6.6%, and an extremely low-efficiency roll-off. This work provides a universal strategy for developing efficient and diverse axially chiral biphenyl emitters.
Collapse
Affiliation(s)
- Aiwei Jiang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Huihui Cui
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Li Zhang
- Nantong Cellulose Fibers Company, Ltd., Nantong, Jiangsu 226007, P. R. China
| | - Chenhui Cao
- Anhui Sholon New Material Technology Company, Ltd., Chuzhou, Anhui 239500, P. R. China
| | - Hong Dai
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Chaowu Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Cunwang Ge
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Hongbin Lu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| | - Zheng-Guang Wu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu 226019, P. R. China
| |
Collapse
|
13
|
Sudhakar P, Gupta AK, Cordes DB, Zysman-Colman E. Thermally activated delayed fluorescence emitters showing wide-range near-infrared piezochromism and their use in deep-red OLEDs. Chem Sci 2024; 15:545-554. [PMID: 38179537 PMCID: PMC10763033 DOI: 10.1039/d3sc05188a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 11/28/2023] [Indexed: 01/06/2024] Open
Abstract
Organic small molecules exhibiting both thermally activated delayed fluorescence (TADF) and wide-ranging piezochromism (Δλ > 150 nm) in the near-infrared region have rarely been reported in the literature. We present three emitters MeTPA-BQ, tBuTPA-BQ and TPPA-BQ based on a hybrid acceptor, benzo[g]quinoxaline-5,10-dione, that emit via TADF, having photoluminescence quantum yields, ΦPL, of 39-42% at photoluminescence (PL) maxima, λPL, of 625-670 nm in 2 wt% doped films in 4,4'-bis(N-carbazolyl)-1,1'-biphenyl (CBP). Despite their similar chemical structures, the PL properties in the crystalline states of MeTPA-BQ (λem = 735 nm, ΦPL = 2%) and tBuTPA-BQ (λem = 657 nm, ΦPL = 11%) are significantly different. Further, compounds tBuTPA-BQ and TPPA-BQ showed a significant PL shift of ∼98 and ∼165 nm upon grinding of the crystalline samples, respectively. Deep-red organic light-emitting diodes with MeTPA-BQ and tBuTPA-BQ were also fabricated, which showed maximum external quantum efficiencies, EQEmax, of 10.1% (λEL = 650 nm) and 8.5% (λEL = 670 nm), respectively.
Collapse
Affiliation(s)
- Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews St Andrews UK KY16 9ST
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews St Andrews UK KY16 9ST
| | - David B Cordes
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews St Andrews UK KY16 9ST
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews St Andrews UK KY16 9ST
| |
Collapse
|
14
|
Yang X, Waterhouse GIN, Lu S, Yu J. Recent advances in the design of afterglow materials: mechanisms, structural regulation strategies and applications. Chem Soc Rev 2023; 52:8005-8058. [PMID: 37880991 DOI: 10.1039/d2cs00993e] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Afterglow materials are attracting widespread attention owing to their distinctive and long-lived optical emission properties which create exciting opportunities in various fields. Recent research has led to the discovery of many new afterglow materials featuring high photoluminescence quantum yields (PLQY) and lifetimes of up to several hours under ambient conditions. Afterglow materials are typically categorized according to their luminescence mechanism, such as long-persistent luminescence (LPL), room temperature phosphorescence (RTP), or thermally activated delayed fluorescence (TADF). Through rational design and novel synthetic strategies to modulate spin-orbit coupling (SOC) and populate triplet exciton states (T1), luminophores with long lifetimes and bright afterglow characteristics can be realized. Initial research towards afterglow materials focused mainly on pure inorganic materials, many of which possessed inherent disadvantages such as metal toxicity or low energy emissions. In recent years, organic-inorganic hybrid afterglow materials (OIHAMs) have been developed with high PLQY and long lifetimes. These hybrid materials exploit the tunable structure and easy processing of organic molecules, as well as enhanced SOC and intersystem crossing (ISC) processes involving heavy atom dopants, to achieve excellent afterglow performance. In this review, we begin by briefly discussing the structure and composition of inorganic and organic-inorganic hybrid afterglow materials, including strategies for regulating their lifetime, PLQY and luminescence wavelength. The specific advantages of organic-inorganic hybrid afterglow materials, including low manufacturing costs, diverse molecular/electronic structures, tunable structures and optical properties, and compatibility with a variety of substrates, are emphasized. Subsequently, we discuss in detail the fundamental mechanisms used by afterglow materials, their classification, design principles, and end applications (including sensing, anticounterfeiting, and photoelectric devices, among others). Finally, existing challenges and promising future directions are discussed, laying a platform for the design of afterglow materials for specific applications.
Collapse
Affiliation(s)
- Xin Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| | | | - Siyu Lu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Jihong Yu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China.
- International Center of Future Science, Jilin University, Changchun 130012, China
| |
Collapse
|
15
|
Wen X, Du S, Zhang L, Liu M. Chiral Deep Eutectic Solvents Enable Full-Color and White Circularly Polarized Luminescence from Achiral Luminophores. Angew Chem Int Ed Engl 2023; 62:e202311816. [PMID: 37743623 DOI: 10.1002/anie.202311816] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
Herein, chiral deep eutectic solvents (DES) are prepared by lauric acid as hydrogen bond donors (HBD) and chiral menthol as hydrogen bond acceptors (HBA). When achiral fluorescent molecules are dopedin the menthol-based chiral DES, they emit circularly polarized luminescence (CPL) with handedness controlled by the molecular chirality (l or d) of menthol. Remarkably, the strategy is universal and a series of achiral fluorescent molecules can be endowed with CPL activity, showing a full-color and white CPL upon appropriate mixing, which paves the way to prepare white CPL materials. Interestingly, CPL appears only in a certain temperature range in the DES. Variable-temperature spectra and other characterization methods reveal that the H-bond network in the chiral DES plays an important role in inducing CPL. This work unveils how the interior structure as well as the hydrogen-bond network of a chiral DES can transfer its chirality to achiral luminophores for the first time and realizes a full-color and white CPL in a DES.
Collapse
Affiliation(s)
- Xin Wen
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| | - Sifan Du
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, China
| | - Li Zhang
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, China
| | - Minghua Liu
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
16
|
Duan J, Shi Y, Zhao F, Li C, Duan Z, Zhang N, Chen P. Chiral Luminescent Aza[7]helicenes Functionalized with a Triarylborane Acceptor and Near-Infrared-Emissive Doublet-State Radicals. Inorg Chem 2023; 62:15829-15833. [PMID: 37713177 DOI: 10.1021/acs.inorgchem.3c02470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
This paper presents new chiral luminescent molecules (N7-BMes2 and N7-TTM) using configurationally stable aza[7]helicene (1) as a universal heteroatom-doped chiral scaffold. The respective reactions of electron-donating 1 with a triarylborane acceptor via palladium-catalyzed Buchwald-Hartwig C-N coupling and with the open-shell doublet-state TTM radical via nucleophilic aromatic substitution (SN2Ar) resulted not only in tunable emissions from blue to the NIR domain but also in significantly enhanced emission quantum efficiency up to Φ = 50%.
Collapse
Affiliation(s)
- Jiaxian Duan
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Yafei Shi
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Fei Zhao
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Chenglong Li
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| | - Zhihua Duan
- Baoshan Animal Disease Prevention and Control Center, Baoshan 678000, Yunnan, China
| | - Niu Zhang
- Analysis and Testing Centre, Beijing Institute of Technology, Beijing 102488, China
| | - Pangkuan Chen
- Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering of the Ministry of Industry and Information Technology, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China
| |
Collapse
|
17
|
Xu L, Liu H, Peng X, Shen P, Zhong Tang B, Zhao Z. Efficient Circularly Polarized Electroluminescence from Achiral Luminescent Materials**. Angew Chem Int Ed Engl 2023. [DOI: 10.1002/ange.202300492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Affiliation(s)
- Letian Xu
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Hao Liu
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Xiaoluo Peng
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Pingchuan Shen
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| | - Ben Zhong Tang
- School of Science and Engineering Shenzhen Institute of Aggregate Science and Technology The Chinese University of Hong Kong Shenzhen Guangdong 518172 China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates South China University of Technology Guangzhou 510640 China
| |
Collapse
|
18
|
Xu L, Liu H, Peng X, Shen P, Tang BZ, Zhao Z. Efficient Circularly Polarized Electroluminescence from Achiral Luminescent Materials. Angew Chem Int Ed Engl 2023; 62:e202300492. [PMID: 36825493 DOI: 10.1002/anie.202300492] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 02/25/2023]
Abstract
Circularly polarized electroluminescence (CP-EL) is generally produced in organic light-emitting diodes (OLEDs) based on special CP luminescent (CPL) materials, while common achiral luminescent materials are rarely considered to be capable of direct producing CP-EL. Herein, near ultraviolet CPL materials with high photoluminescence quantum yields and good CPL dissymmetry factors are developed, which can induce blue to red CPL for various achiral luminescent materials. Strong near ultraviolet CP-EL with the best external quantum efficiencies (ηext s) of 9.0 % and small efficiency roll-offs are achieved by using them as emitters for CP-OLEDs. By adopting them as hosts or sensitizers, commercially available yellow-orange achiral phosphorescence, thermally activated delayed fluorescence (TADF) and multi-resonance (MR) TADF materials can generate intense CP-EL, with high dissymmetry factors and outstanding ηext s (30.8 %), demonstrating a simple and universal avenue towards efficient CP-EL.
Collapse
Affiliation(s)
- Letian Xu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Hao Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Xiaoluo Peng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Pingchuan Shen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
19
|
Zheng Y, Zhang L, Huang Z, Li S, Zuo L, Liang Y, Liu C, Luo S, Shi G, Zhao Z, Sun F, Xu B. Bright Organic Mechanoluminescence and Remarkable Mechanofluorochromism from Circularly Polarized TADF Enantiomers with Aggregation-Induced Emission Properties. Chemistry 2023; 29:e202202594. [PMID: 36318097 DOI: 10.1002/chem.202202594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022]
Abstract
The development of circularly polarized thermally activated delayed fluorescence (CP-TADF) luminogens with stimuli-response characteristics remains challenging. Herein, a pair of organic enantiomers, S-CzTA and R-CzTA, with aggregation-induced emission properties, have been successfully developed by introducing chiral 1,2,3,4-tetrahydronaphthalene and carbazole to phthalimide. They present CP-TADF properties in toluene solutions, giving dissymmetric factors of 0.84×10-3 and -1.03×10-3 , respectively. In the crystalline state, both S-CzTA and R-CzTA can emit intense blue TADF and produce very bright sky-blue mechanoluminescence (ML) and remarkable mechanofluorochromism (MFC) under the stimuli of mechanical force. Single-crystal analysis and theoretical calculation results suggest that their ML activities are probably associated with their chiral and polar molecular structures and unique non-centrosymmetric molecular packing modes. Furthermore, the MFC properties of the enantiomers likely originate from the destruction of crystal structure, leading to the planarization of molecular conformation. This work may provide helpful guidance for developing new CP-TADF materials with force-stimuli-responsive properties.
Collapse
Affiliation(s)
- Yitao Zheng
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, P. R. China
| | - Letian Zhang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, P. R. China
| | - Zihao Huang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, P. R. China
| | - Shufeng Li
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, P. R. China
| | - Lingqi Zuo
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, P. R. China
| | - Yaohui Liang
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, P. R. China
| | - Cong Liu
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, P. R. China
| | - Suilian Luo
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, P. R. China
| | - Guang Shi
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, P. R. China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Fengqiang Sun
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, P. R. China
| | - Bingjia Xu
- School of Chemistry, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
20
|
Yang SY, Feng ZQ, Fu Z, Zhang K, Chen S, Yu YJ, Zou B, Wang K, Liao LS, Jiang ZQ. Highly Efficient Sky-Blue π-Stacked Thermally Activated Delayed Fluorescence Emitter with Multi-Stimulus Response Properties. Angew Chem Int Ed Engl 2022; 61:e202206861. [PMID: 35689409 DOI: 10.1002/anie.202206861] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Indexed: 12/29/2022]
Abstract
Organic materials with multi-stimulus response (MSR) properties have demonstrated many potential and practical applications. Herein, a π-stacked thermally activated delayed fluorescence (TADF) material with multi-stimulus response (MSR) properties, named SDMAC, was designed and synthesized using distorted 9,9-dimethyl-10-phenyl-9,10-dihydroacridine as a donor. SDMAC possesses a rigid π-stacked configuration with intramolecular through-space interactions and exhibits aggregation-induced emission enhancement (AIEE), solvatochromic, piezochromic, and circularly polarized luminescence (CPL) under different external stimuli. The rigid molecular structure and efficient TADF properties of SDMAC can be used in displays and lighting. Using SDMAC as an emitter, the maximum external quantum efficiency (EQE) of the fabricated organic light-emitting diodes (OLEDs) is as high as 28.4 %, which make them the most efficient CP-TADF OLEDs based on the through-space charge transfer strategy. The CP organic light-emitting diodes (CP-OLEDs) exhibit circularly polarized electroluminescence (CPEL) signals.
Collapse
Affiliation(s)
- Sheng-Yi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zi-Qi Feng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhiyuan Fu
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Kai Zhang
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, 999078, China
| | - Song Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - You-Jun Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Kai Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, 130012, China
| | - Liang-Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China.,Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, 999078, China
| | - Zuo-Quan Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu, 215123, China
| |
Collapse
|
21
|
Yang S, Feng Z, Fu Z, Zhang K, Chen S, Yu Y, Zou B, Wang K, Liao L, Jiang Z. Highly Efficient Sky‐Blue π‐Stacked Thermally Activated Delayed Fluorescence Emitter with Multi‐Stimulus Response Properties. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sheng‐Yi Yang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 China
| | - Zi‐Qi Feng
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 China
| | - Zhiyuan Fu
- State Key Laboratory of Superhard Materials College of Physics Jilin University Changchun 130012 China
| | - Kai Zhang
- Macao Institute of Materials Science and Engineering Macau University of Science and Technology Taipa 999078 China
| | - Song Chen
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 China
| | - You‐Jun Yu
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 China
| | - Bo Zou
- State Key Laboratory of Superhard Materials College of Physics Jilin University Changchun 130012 China
| | - Kai Wang
- State Key Laboratory of Superhard Materials College of Physics Jilin University Changchun 130012 China
| | - Liang‐Sheng Liao
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 China
- Macao Institute of Materials Science and Engineering Macau University of Science and Technology Taipa 999078 China
| | - Zuo‐Quan Jiang
- Institute of Functional Nano & Soft Materials (FUNSOM) Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|