1
|
Wu P, Goujon G, Pan S, Tuccio B, Pégot B, Dagousset G, Anselmi E, Magnier E, Bolm C. Cyclic Sulfoximines as Methyl and Perdeuteromethyl Transfer Agents and Their Applications in Photoredox Catalysis. Angew Chem Int Ed Engl 2024; 63:e202412418. [PMID: 39234959 DOI: 10.1002/anie.202412418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/06/2024]
Abstract
Benzo[1,3,2]dithiazole-1,1,3-trioxides are bench-stable and easy-to-use reagents. In photoredox catalysis, they generate methyl and perdeuteromethyl radicals which can add to a variety of radical acceptors, including olefins, acrylamides, quinoxalinones, isocyanides, enol silanes, and N-Ts acrylamide. As byproduct, a salt is formed which can be regenerated to the original methylating agent. Flow chemistry provides an option for reaction scale-up further underscoring the synthetic usefulness of these methylation reagents. Mechanistic investigations suggest a single-electron transfer (SET) pathway induced by photoredox catalysis.
Collapse
Affiliation(s)
- Peng Wu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Gabriel Goujon
- Institut Lavoisier de Versailles, Université Paris-Saclay, 78000, Versailles, France
| | - Shulei Pan
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Béatrice Tuccio
- Aix-Marseille Université, CNRS, Institut de Chimie Radicalaire, UMR 7273, F-13397, Marseille Cedex 20, France
| | - Bruce Pégot
- Institut Lavoisier de Versailles, Université Paris-Saclay, 78000, Versailles, France
| | - Guillaume Dagousset
- Institut Lavoisier de Versailles, Université Paris-Saclay, 78000, Versailles, France
| | - Elsa Anselmi
- Institut Lavoisier de Versailles, Université Paris-Saclay, 78000, Versailles, France
- Université de Tours, Faculté des Sciences et Techniques, 37200, Tours, France
| | - Emmanuel Magnier
- Institut Lavoisier de Versailles, Université Paris-Saclay, 78000, Versailles, France
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
2
|
Chen C, Xu H, Zhu S. Polarity-Reversed Functionalization of Aliphatic Aldehydes via Divergent Nickel Hydride Catalysis. Angew Chem Int Ed Engl 2024:e202419965. [PMID: 39665868 DOI: 10.1002/anie.202419965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/13/2024]
Abstract
Divergent catalysis represents an exciting frontier for unlocking molecular structural diversity and exploring new activation modes. Here, we report the unexpected discovery of polarity-reversed divergent activation and functionalization of aliphatic aldehydes, where enolizable aliphatic aldehydes are selectively activated by nickel hydride to form two distinct alkylnickel intermediates divergently. This mild and operationally simple process enables the transformation of a wide variety of readily available aliphatic aldehydes, along with alkyl or aryl electrophiles, into the corresponding secondary alcohols or more challenging deoxygenated alkanes with excellent chemoselectivity.
Collapse
Affiliation(s)
- Changpeng Chen
- State Key Laboratory of Coordination Chemistry, Engineering Research Center of Photoresist Materials, Ministry of Education, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210093, Nanjing, China
| | - Hanhong Xu
- State Key Laboratory of Coordination Chemistry, Engineering Research Center of Photoresist Materials, Ministry of Education, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210093, Nanjing, China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Engineering Research Center of Photoresist Materials, Ministry of Education, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210093, Nanjing, China
- School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 200240, Shanghai, China
| |
Collapse
|
3
|
Wei H, Luo Y, Ren J, Yuan Q, Zhang W. Ni(II)-catalyzed asymmetric alkenylation and arylation of aryl ketones with organoborons via 1,5-metalate shift. Nat Commun 2024; 15:8775. [PMID: 39389975 PMCID: PMC11467321 DOI: 10.1038/s41467-024-53005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
Chiral tertiary alcohols are an important structural motif, however, the general and efficient methodologies for their synthesis are less reported. Herein, we report a Ni(ІІ)-catalyzed asymmetric alkenylation and arylation of aryl ketones with organoborons under air via a 1,5-metalate shift strategy to obtain chiral tertiary allylic alcohols and diaryl alcohols. The reaction demonstrates good functional group tolerance and delivers chiral tertiary alcohols with good to excellent results. Furthermore, this method can be applied to the late-stage modification of drugs and the efficient synthesis of natural products. Notably, the reaction proceeds through an outer-sphere mechanism. The Ni(II) complex functions both as a Lewis acid to activate the ketone and create a chiral environment, and as coordination bridge linking the ketone and the organoboron-derived "ate" complex, facilitating the 1,5-metalate shift without forming a C-Ni bond. This approach contrasts with traditional transition metal-catalyzed nucleophilic addition reactions that involve carbon-metal bond formation.
Collapse
Affiliation(s)
- Haipeng Wei
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China
| | - Yicong Luo
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China
| | - Jinbao Ren
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China
| | - Qianjia Yuan
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China.
| | - Wanbin Zhang
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, 200240, Shanghai, P. R. China.
| |
Collapse
|
4
|
Abstract
ConspectusPalladium catalysis, as one of the most important strategies in asymmetric synthesis, has continuously attracted the attention of organic chemists. With the development of chiral ligands, increasingly challenging reactions and substantial progress in asymmetric catalysis are being realized.Since 2014, we have focused on exploiting a series of sulfinamide phosphine ligands called "Sadphos," including Ming-Phos, Xu-Phos, Xiao-Phos, Xiang-Phos, TY-Phos, PC-Phos, GF-Phos, and WJ-Phos. These ligands can be easily prepared in two to four steps using commercial materials. These new types of ligands have shown remarkable performance in transition-metal-catalyzed reactions, especially in Pd-catalyzed transformations. X-ray diffraction analysis, mechanistic studies, and density functional theory calculations have revealed that Sadphos ligands can coordinate with the Pd0 and PdII species in the Pd0/P, Pd0/P,S, or PdII/P,O modes.This Account summarizes our recent efforts toward palladium-catalyzed enantioselective reactions using Sadphos ligands. These ligands were found to be privileged and very crucial to promote the reactions by increasing the reactivity and enantioselectivity. Ming-Phos is an effective ligand in Pd-catalyzed asymmetric coupling and intramolecular Heck reactions, providing highly enantioselective trisubstituted allenes, axially chiral anilides, gem-diarylmethine silanes, and disubstituted dihydroisoquinolinones. Incorporation of an electron-rich cyclohexyl group in the phosphine moiety afforded Xu-Phos, which showed a unique effect in a series of asymmetric transformations, including reductive Heck, dearomative Mizoroki-Heck, tandem Heck/Suzuki coupling, carboiodination, carboamination, and cross-coupling reactions. Using a similar strategy, our group synthesized more electron-rich TY-Phos and Xiang-Phos ligands bearing t-butyl and 1-adamantyl group at P atoms, respectively. Regarding stereoelectronic features, these two characteristic ligands were the best choice to satisfy the requirements of the palladium-catalyzed fluoroarylation of gem-difluoroalkenes, intermolecular α-arylation of aldehydes, carboetherification of alkenyl oximes, and carboheterofunctionalization of 2,3-dihydrofurans. Compared with the aforementioned Sadphos ligands, the attractive features of Xiao-Phos, including high nucleophilicity originating from the CH2PPh2 group and the ortho-substituent effect at the side of the aryl ring, are presumably responsible for its efficiency. The Pd/Xiao-Phos catalyst system shows good performance in a series of cross-coupling reactions of secondary phosphine oxides, affording P-stereogenic products bearing multiple types of molecular skeletons. The modification of the basic Sadphos backbone by introducing a xanthene skeleton motivated us to design and synthesize monophosphines, named PC-Phos and GF-Phos. PC-Phos is effective in various reactions, including arylation of sulfenate anions, denitrogenative cyclization of benzotriazoles, and dearomatization of indoles. The practicability of GF-Phos was validated in the Pd-catalyzed asymmetric three-component coupling of N-tosylhydrazones, aryl halides, and terminal alkynes, as well as in the cross-coupling of N-tosylhydrazones and vinyl iodides with pendent amines. In addition, ferrocene-derived WJ-Phos was employed in the palladium-catalyzed Suzuki-Miyaura cross-coupling reaction, affording axially chiral biaryl monophosphine oxides in excellent enantiomeric excesses.
Collapse
Affiliation(s)
- Wenbo Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Junliang Zhang
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200433, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, CAS, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
5
|
Gao J, He XC, Liu YL, Li KR, Guan JP, Chen HB, Xiang HY, Chen K, Yang H. Visible-Light-Induced Nickel-Catalyzed Cross-Coupling of Aryl Bromides with Nitriles. Org Lett 2023. [PMID: 38032230 DOI: 10.1021/acs.orglett.3c03458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Herein, a visible-light-induced nickel-catalyzed cross-coupling of aryl bromide with nitrile has been reported. By utilization of readily available nitriles as carbonyl precursors, a range of structurally diverse aryl ketones were facilely constructed. The synthetic simplicity, mild reaction conditions, and acidic functional group tolerance would broaden the synthetic utilities of this developed protocol as an expedient alternative to Grignard/organolithium protocols.
Collapse
Affiliation(s)
- Jie Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xian-Chen He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yan-Ling Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Ke-Rong Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jian-Ping Guan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hong-Bin Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Jiangxi Time Chemical Company, Ltd., Fuzhou 344800, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
6
|
Wang Y, Li EQ, Duan Z. Ligand-dependent, palladium-catalyzed stereodivergent synthesis of chiral tetrahydroquinolines. Chem Sci 2022; 13:8131-8136. [PMID: 35919424 PMCID: PMC9278114 DOI: 10.1039/d2sc02771b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/18/2022] [Indexed: 12/05/2022] Open
Abstract
The most fundamental tasks in asymmetric synthesis are the development of fully stereodivergent strategies to access the full complement of stereoisomers of products bearing multiple stereocenters. Although great progress has been made in the past few decades, developing general and practical strategies that allow selective generation of any diastereomer of a reaction product bearing multiple stereocentres through switching distinct chiral catalysts is a significant challenge. Here, attaining precise switching of the product stereochemistry, we develop a novel P-chirogenic ligand, i.e.YuePhos, which can be easily derived from inexpensive and commercially available starting materials in four chemical operations. Through switching of three chiral ligands, an unprecedented ligand-dependent diastereodivergent Pd-catalyzed asymmetric intermolecular [4 + 2] cycloaddition reaction of vinyl benzoxazinanone with α-arylidene succinimides was developed. This novel method provides an efficient route for the stereodivergent synthesis of six stereoisomers of pyrrolidines bearing up to three adjacent stereocenters (one quaternary center). Despite the anticipated challenges associated with controlling stereoselectivity in such a complex system, the products are obtained in enantiomeric excesses ranging up to 98% ee. In addition, the synthetic utilities of optically active hexahydrocarbazoles are also shown.
Collapse
Affiliation(s)
- Yue Wang
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Er-Qing Li
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University Zhengzhou 450001 P. R. China
| | - Zheng Duan
- College of Chemistry, Green Catalysis Center, International Phosphorus Laboratory, International Joint Research Laboratory for Functional Organophosphorus Materials of Henan Province, Zhengzhou University Zhengzhou 450001 P. R. China
| |
Collapse
|