1
|
Obana T, Nakajima M, Nakazato K, Nakagawa H, Murata K, Tsuda M, Fuwa H. Iriomoteolide-1a and -1b: Structure Elucidation by Integrating NMR Spectroscopic Analysis, Theoretical Calculation, and Total Synthesis. J Am Chem Soc 2024; 146:29836-29846. [PMID: 39417618 DOI: 10.1021/jacs.4c11714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The structure of iriomoteolide-1a, a marine macrolide with potent cytotoxic activity against human cancer cells, has been under scrutiny for more than a decade since the first total synthesis of the proposed structure was achieved by Horne. Here we disclose the correct structure of iriomoteolide-1a. Given a huge number of possible stereoisomers, we adopted an integrated strategy toward the structure elucidation of iriomoteolide-1a: (1) NMR spectroscopic analysis/molecular mechanics-based conformational analysis for configurational reassignment of the macrolactone domain; (2) model synthesis for validating the reassigned configuration of the macrolactone domain; (3) GIAO NMR calculation/DP4+ analysis of side chain stereoisomers; and (4) total synthesis of the most likely structure. Moreover, the correct structure of iriomoteolide-1b, a natural congener, was also determined by an integration of NMR spectroscopic analysis, GIAO NMR calculation/DP4+ analysis, and total synthesis.
Collapse
Affiliation(s)
- Tomohiro Obana
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Miyu Nakajima
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Kazuki Nakazato
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Hayato Nakagawa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Keisuke Murata
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| | - Masashi Tsuda
- Faculty of Agriculture and Marine Science and Marine Core Research Institute, Kochi University, Monobe-B200, Nankoku, Kochi 783-8502, Japan
| | - Haruhiko Fuwa
- Department of Applied Chemistry, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
| |
Collapse
|
2
|
Li RP, Xu X, Zhang Z, Gong X, Tang S. Anion Relay Chemistry Enables Stereoselective Carbonyl-Alkyne Metathesis Reactions. Org Lett 2024; 26:7601-7606. [PMID: 39230513 DOI: 10.1021/acs.orglett.4c02695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Dithiane chemistry is increasingly advantageous in the development of novel anion relay chemistry (ARC) modes that harness their umpolung properties to address new chemical challenges. Herein, we report the use of an ARC strategy to promote the regioselective carbonyl alkyne metathesis (CAM) of various carbonyl compounds with alkynyl 1,3-dithianes. Notably, this ARC transformation provides a platform for obtaining stereodefined polysubstituted 1,3-dienes.
Collapse
Affiliation(s)
- Rui-Peng Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiangrong Xu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhuzhu Zhang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xiaomeng Gong
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| | - Shouchu Tang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|
3
|
Hackbarth J, Friestad GK. A Three-Step Catalytic Asymmetric Sequence from Alkynes to α-Silyloxyaldehydes and Its Application to a C22-C41 Fragment of Bastimolide A. Org Lett 2024; 26:4492-4496. [PMID: 38753853 PMCID: PMC11148846 DOI: 10.1021/acs.orglett.4c01310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/07/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
1,5-Polyol structures present challenges in stereocontrol, configurational assignment, and diastereomer separation; these are all compromised by remote stereochemical relationships. A configuration-encoded approach with alcohol configurations previously established within enantiopure building blocks offers a versatile solution to these issues. The iterative construction begins with α-silyloxyaldehydes; here, we introduce an enantioselective and step-economical route from alkynes to α-silyloxyaldehydes via silyl cation-induced ring opening of enol ester epoxides. This development enables an efficient configuration-encoded synthesis of the C22-C41 fragment of the bastimolides.
Collapse
Affiliation(s)
- Jacob
N. Hackbarth
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Gregory K. Friestad
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
4
|
Carroll AR, Copp BR, Grkovic T, Keyzers RA, Prinsep MR. Marine natural products. Nat Prod Rep 2024; 41:162-207. [PMID: 38285012 DOI: 10.1039/d3np00061c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Covering: January to the end of December 2022This review covers the literature published in 2022 for marine natural products (MNPs), with 645 citations (633 for the period January to December 2022) referring to compounds isolated from marine microorganisms and phytoplankton, green, brown and red algae, sponges, cnidarians, bryozoans, molluscs, tunicates, echinoderms, the submerged parts of mangroves and other intertidal plants. The emphasis is on new compounds (1417 in 384 papers for 2022), together with the relevant biological activities, source organisms and country of origin. Pertinent reviews, biosynthetic studies, first syntheses, and syntheses that led to the revision of structures or stereochemistries, have been included. An analysis of NP structure class diversity in relation to biota source and biome is discussed.
Collapse
Affiliation(s)
- Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Australia.
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Australia
| | - Brent R Copp
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - Tanja Grkovic
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, and Molecular Targets Program, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Robert A Keyzers
- Centre for Biodiscovery, and School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | |
Collapse
|
5
|
Sutar DV, Sarang NU, Jamdade AB, Gnanaprakasam B. Continuous Flow Inter- and Intramolecular Macrolactonization under High Dilution Conditions. J Org Chem 2023; 88:3740-3759. [PMID: 36862843 DOI: 10.1021/acs.joc.2c03000] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
An efficient continuous flow process for the macrolactonization of seco acids and diacids using diols in the presence of Mukaiyama reagent (N-methyl-2-chloropyridinium iodide) has been developed for medium to large sized macrocyclic lactones. In comparison with other methods, the continuous flow process provided good to high yield in a short reaction time. By using this methodology, a wide range of macrocyclic lactones (11 compounds), dilactones (15 compounds), and tetralactone derivatives (2 compounds) with various ring sizes (12-26 atoms in the core) were synthesized in just 35 min of residence time. Advantageously, macrolactonization under the flow process is very elegant to handle the high dilution of reactants with a defined perfluoroalkoxy alkanes (PFA) tube reactor volume (7 mL).
Collapse
Affiliation(s)
- Dashrat Vishambar Sutar
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Neha Uttamrao Sarang
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Akash Bandu Jamdade
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| | - Boopathy Gnanaprakasam
- Department of Chemistry, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune 411008, India
| |
Collapse
|
6
|
Ryckaert B, Demeyere E, Degroote F, Janssens H, Winne JM. 1,4-Dithianes: attractive C2-building blocks for the synthesis of complex molecular architectures. Beilstein J Org Chem 2023; 19:115-132. [PMID: 36761474 PMCID: PMC9907017 DOI: 10.3762/bjoc.19.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
This review covers the synthetic applications of 1,4-dithianes, as well as derivatives thereof at various oxidation states. The selected examples show how the specific heterocyclic reactivity can be harnessed for the controlled synthesis of carbon-carbon bonds. The reactivity is compared to and put into context with more common synthetic building blocks, such as 1,3-dithianes and (hetero)aromatic building blocks. 1,4-Dithianes have as yet not been investigated to the same extent as their well-known 1,3-dithiane counterparts, but they do offer attractive transformations that can find good use in the assembly of a wide array of complex molecular architectures, ranging from lipids and carbohydrates to various carbocyclic scaffolds. This versatility arises from the possibility to chemoselectively cleave or reduce the sulfur-heterocycle to reveal a versatile C2-synthon.
Collapse
Affiliation(s)
- Bram Ryckaert
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 (S4), 9000 Gent, Belgium
| | - Ellen Demeyere
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 (S4), 9000 Gent, Belgium
| | - Frederick Degroote
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 (S4), 9000 Gent, Belgium
| | - Hilde Janssens
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 (S4), 9000 Gent, Belgium
| | - Johan M Winne
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 (S4), 9000 Gent, Belgium
| |
Collapse
|