1
|
Feng Q, De Chavez D, Kihlberg J, Poongavanam V. A membrane permeability database for nonpeptidic macrocycles. Sci Data 2025; 12:10. [PMID: 39753569 PMCID: PMC11698989 DOI: 10.1038/s41597-024-04302-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/13/2024] [Indexed: 01/06/2025] Open
Abstract
The process of developing new drugs is arduous and costly, particularly for targets classified as "difficult-to-drug." Macrocycles show a particular ability to modulate difficult-to-drug targets, including protein-protein interactions, while still allowing oral administration. However, the determination of membrane permeability, critical for reaching intracellular targets and for oral bioavailability, is laborious and expensive. In silico methods are a cost-effective alternative, enabling predictions prior to compound synthesis. Here, we present a comprehensive online database ( https://swemacrocycledb.com/ ), housing 5638 membrane permeability datapoints for 4216 nonpeptidic macrocycles, curated from the literature, patents, and bioactivity repositories. In addition, we present a new descriptor, the "amide ratio" (AR), that quantifies the peptidic nature of macrocyclic compounds, enabling the classification of peptidic, semipeptidic, and nonpeptidic macrocycles. Overall, this resource fills a gap among existing databases, offering valuable insights into the membrane permeability of nonpeptidic and semipeptidic macrocycles, and facilitating predictions for drug discovery projects.
Collapse
Affiliation(s)
- Qiushi Feng
- Department of Chemistry-BMC, Uppsala University, SE-75123, Uppsala, Sweden
| | - Danjo De Chavez
- Department of Chemistry-BMC, Uppsala University, SE-75123, Uppsala, Sweden
| | - Jan Kihlberg
- Department of Chemistry-BMC, Uppsala University, SE-75123, Uppsala, Sweden.
| | | |
Collapse
|
2
|
Salveson PJ, Moyer AP, Said MY, Gӧkçe G, Li X, Kang A, Nguyen H, Bera AK, Levine PM, Bhardwaj G, Baker D. Expansive discovery of chemically diverse structured macrocyclic oligoamides. Science 2024; 384:420-428. [PMID: 38662830 DOI: 10.1126/science.adk1687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 03/22/2024] [Indexed: 05/03/2024]
Abstract
Small macrocycles with four or fewer amino acids are among the most potent natural products known, but there is currently no way to systematically generate such compounds. We describe a computational method for identifying ordered macrocycles composed of alpha, beta, gamma, and 17 other amino acid backbone chemistries, which we used to predict 14.9 million closed cycles composed of >42,000 monomer combinations. We chemically synthesized 18 macrocycles predicted to adopt single low-energy states and determined their x-ray or nuclear magnetic resonance structures; 15 of these were very close to the design models. We illustrate the therapeutic potential of these macrocycle designs by developing selective inhibitors of three protein targets of current interest. By opening up a vast space of readily synthesizable drug-like macrocycles, our results should considerably enhance structure-based drug design.
Collapse
Affiliation(s)
- Patrick J Salveson
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Adam P Moyer
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Meerit Y Said
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Gizem Gӧkçe
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Xinting Li
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alex Kang
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Hannah Nguyen
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Asim K Bera
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Paul M Levine
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Gaurav Bhardwaj
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
3
|
Huh S, Batistatou N, Wang J, Saunders GJ, Kritzer JA, Yudin AK. Cell penetration of oxadiazole-containing macrocycles. RSC Chem Biol 2024; 5:328-334. [PMID: 38576720 PMCID: PMC10989506 DOI: 10.1039/d3cb00201b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/21/2023] [Indexed: 04/06/2024] Open
Abstract
Passive membrane permeability is an important property in drug discovery and biological probe design. To elucidate the cell-penetrating ability of oxadiazole-containing (Odz) peptides, we employed the Chloroalkane Penetration Assay. The present study demonstrates that Odz cyclic peptides can be highly cell-penetrant depending on the position of specific side chains and the chloroalkane tag. Solution NMR shows that Odz cyclic peptides adopt a β-turn conformation. However, despite observing high cell penetration, we observed low passive permeability in experiments with artificial membranes. These findings highlight the complexity of controlling cell penetration for conformationally sensitive macrocycles and suggest that Odz cyclic peptides may provide a framework for designing cell-penetrant cyclic peptides.
Collapse
Affiliation(s)
- Sungjoon Huh
- Davenport Research Laboratories, University of Toronto 80 St. George St Toronto Ontario M5S 3H6 Canada
| | - Nefeli Batistatou
- Department of Chemistry, Tufts University 62 Talbot Ave Medford MA 02155 USA
| | - Jing Wang
- Department of Chemistry, Tufts University 62 Talbot Ave Medford MA 02155 USA
| | - George J Saunders
- Davenport Research Laboratories, University of Toronto 80 St. George St Toronto Ontario M5S 3H6 Canada
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University 62 Talbot Ave Medford MA 02155 USA
| | - Andrei K Yudin
- Davenport Research Laboratories, University of Toronto 80 St. George St Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
4
|
Faris J, Adaligil E, Popovych N, Ono S, Takahashi M, Nguyen H, Plise E, Taechalertpaisarn J, Lee HW, Koehler MFT, Cunningham CN, Lokey RS. Membrane Permeability in a Large Macrocyclic Peptide Driven by a Saddle-Shaped Conformation. J Am Chem Soc 2024; 146:4582-4591. [PMID: 38330910 PMCID: PMC10885153 DOI: 10.1021/jacs.3c10949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/10/2024]
Abstract
The effort to modulate challenging protein targets has stimulated interest in ligands that are larger and more complex than typical small-molecule drugs. While combinatorial techniques such as mRNA display routinely produce high-affinity macrocyclic peptides against classically undruggable targets, poor membrane permeability has limited their use toward primarily extracellular targets. Understanding the passive membrane permeability of macrocyclic peptides would, in principle, improve our ability to design libraries whose leads can be more readily optimized against intracellular targets. Here, we investigate the permeabilities of over 200 macrocyclic 10-mers using the thioether cyclization motif commonly found in mRNA display macrocycle libraries. We identified the optimal lipophilicity range for achieving permeability in thioether-cyclized 10-mer cyclic peptide-peptoid hybrid scaffolds and showed that permeability could be maintained upon extensive permutation in the backbone. In one case, changing a single amino acid from d-Pro to d-NMe-Ala, representing the loss of a single methylene group in the side chain, resulted in a highly permeable scaffold in which the low-dielectric conformation shifted from the canonical cross-beta geometry of the parent compounds into a novel saddle-shaped fold in which all four backbone NH groups were sequestered from the solvent. This work provides an example by which pre-existing physicochemical knowledge of a scaffold can benefit the design of macrocyclic peptide mRNA display libraries, pointing toward an approach for biasing libraries toward permeability by design. Moreover, the compounds described herein are a further demonstration that geometrically diverse, highly permeable scaffolds exist well beyond conventional drug-like chemical space.
Collapse
Affiliation(s)
- Justin
H. Faris
- Department
of Chemistry and Biochemistry, University
of California, Santa
Cruz, California 95064, United States
| | - Emel Adaligil
- Department
of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| | - Nataliya Popovych
- Department
of Early Discovery Biochemistry, Genentech, South San Francisco, California 94080, United States
| | - Satoshi Ono
- Innovative
Research Division, Mitsubishi Tanabe Pharma
Corporation, Kanagawa 227-0033, Japan
| | - Mifune Takahashi
- Department
of Drug Metabolism and Pharmacokinetics, Genentech, South
San Francisco, California 94080, United States
| | - Huy Nguyen
- Department
of Analytical Research, Genentech, South San Francisco, California 94080, United States
| | - Emile Plise
- Department
of Drug Metabolism and Pharmacokinetics, Genentech, South
San Francisco, California 94080, United States
| | - Jaru Taechalertpaisarn
- Department
of Chemistry and Biochemistry, University
of California, Santa
Cruz, California 95064, United States
| | - Hsiau-Wei Lee
- Department
of Chemistry and Biochemistry, University
of California, Santa
Cruz, California 95064, United States
| | - Michael F. T. Koehler
- Department
of Medicinal Chemistry, Genentech, South San Francisco, California 94080, United States
| | - Christian N. Cunningham
- Department
of Peptide Therapeutics, Genentech, South San Francisco, California 94080, United States
| | - R. Scott Lokey
- Department
of Chemistry and Biochemistry, University
of California, Santa
Cruz, California 95064, United States
| |
Collapse
|
5
|
Diaz DB, Rowshanpour R, Saunders GJ, Dudding T, Yudin AK. The Role of Attractive Non-Covalent Interactions in Peptide Macrocyclization. J Org Chem 2024; 89:1483-1491. [PMID: 38217516 DOI: 10.1021/acs.joc.3c02084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2024]
Abstract
The efficiency of macrocyclization reactions relies on the appropriate conformational preorganization of a linear precursor, ensuring that reactive ends are in spatial proximity prior to ring closure. Traditional peptide cyclization approaches that reduce the extent of terminal ion pairing often disfavor cyclization-conducive conformations and can lead to undesired cyclodimerization or oligomerization side reactions, particularly when they are performed without high dilution. To address this challenge, synthetic strategies that leverage attractive noncovalent interactions, such as zwitterionic attraction between chain termini during macrocyclization, offer a potential solution by reducing the entropic penalty associated with linear peptides adopting precyclization conformations. In this study, we investigate the role of (N-isocyanoimino)triphenylphosphorane (Pinc) in facilitating the cyclization of linear peptides into conformationally rigid macrocycles. The observed moderate diastereoselectivity is consistent with the preferential Si-facial addition of Pinc, where the isocyanide adds to the E-iminium ion on the same face as the l-proline amide group. The resulting peptide chain reveals that the activated phosphonium ylide of Pinc brings the reactive ends close together, promoting cyclization by enclosing the carboxylate within the interior of the pentapeptide and preventing the formation of byproducts. For shorter peptides with modified peptide backbones, the cyclization mechanism and outcome are redirected, as nucleophilic motifs such as thiazole and imidazole can covalently trap nitrilium intermediates. The isolation of the intermediate in the unproductive macrocyclization pathway, along with nuclear magnetic resonance and density functional theory studies, provides insights into heterocycle-dependent selectivity. The Pinc-driven macrocyclization process has generated diverse collections of cyclic molecules, and our models offer a comprehensive understanding of observed trends, facilitating the development of other heterocycle-forming macrocyclization reactions.
Collapse
Affiliation(s)
- Diego B Diaz
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Rozhin Rowshanpour
- Department of Chemistry, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - George J Saunders
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Travis Dudding
- Department of Chemistry, Brock University, St. Catharines, Ontario L2S 3A1, Canada
| | - Andrei K Yudin
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
6
|
Diamandas M, Heller NW, Yudin AK. Nitrilium ion trapping as a strategy to access structurally diverse heterobiaryl-containing peptide macrocycles. Chem Sci 2023; 14:9482-9487. [PMID: 37712035 PMCID: PMC10498670 DOI: 10.1039/d3sc03058j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 08/04/2023] [Indexed: 09/16/2023] Open
Abstract
Biaryl and heterobiaryl-containing cyclic peptides represent promising scaffolds for the development of bioactive molecules. The incorporation of heterobiaryl motifs continues to pose synthetic challenges, which is partially due to the difficulties in effecting late-stage metal-catalyzed cross-couplings. We report a new strategy to form heterobiaryls that is based on trapping nitrilium ions. The sequence is exemplified using oxadiazole- and oxazole-containing biaryl linkages. NMR analysis and molecular dynamics simulations reveal structural control elements common to each member of the heterobiaryl containing peptide family in this study. Strategic substitutions on the C-terminal aminobenzoic acid moiety paired with installation of oxadiazole or oxazole heterobiaryl backbone linkages allow for the modulation of peptide backbone conformation, which should assist efforts to optimize the biophysical properties of peptide macrocycles.
Collapse
Affiliation(s)
- Matthew Diamandas
- Department of Chemistry, University of Toronto Toronto ON M5S 3H6 Canada
| | - Nicholas W Heller
- Department of Chemistry, University of Toronto Toronto ON M5S 3H6 Canada
| | - Andrei K Yudin
- Department of Chemistry, University of Toronto Toronto ON M5S 3H6 Canada
| |
Collapse
|
7
|
Huh S, Saunders GJ, Yudin AK. Single Atom Ring Contraction of Peptide Macrocycles Using Cornforth Rearrangement. Angew Chem Int Ed Engl 2023; 62:e202214729. [PMID: 36346911 DOI: 10.1002/anie.202214729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/09/2022]
Abstract
Site-selective transformations of densely functionalized scaffolds have been a topic of intense interest in chemical synthesis. Herein we have repurposed the rarely used Cornforth rearrangement as a tool to effect a single-atom ring contraction in cyclic peptide backbones. Investigations into the kinetics of the rearrangement were carried out to understand the impact of electronic factors, ring size, and linker type on the reaction efficiency. Conformational analysis was undertaken and showed how subtle differences in the peptide backbone result in substrate-dependent reaction profiles. This methodology can now be used to perform conformation-activity studies. The chemistry also offers an opportunity to install building blocks that are not compatible with traditional C-to-N iterative synthesis of macrocycle precursors.
Collapse
Affiliation(s)
- Sungjoon Huh
- Davenport Research Laboratories, University of Toronto, 80 St. George St, Toronto, Ontario, M5S 3H6, Canada
| | - George J Saunders
- Davenport Research Laboratories, University of Toronto, 80 St. George St, Toronto, Ontario, M5S 3H6, Canada
| | - Andrei K Yudin
- Davenport Research Laboratories, University of Toronto, 80 St. George St, Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
8
|
Alteen MG, Peacock H, Meek RW, Busmann JA, Zhu S, Davies GJ, Suga H, Vocadlo DJ. Potent De Novo Macrocyclic Peptides That Inhibit O-GlcNAc Transferase through an Allosteric Mechanism. Angew Chem Int Ed Engl 2023; 62:e202215671. [PMID: 36460613 DOI: 10.1002/anie.202215671] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/27/2022] [Accepted: 11/28/2022] [Indexed: 12/04/2022]
Abstract
Glycosyltransferases are a superfamily of enzymes that are notoriously difficult to inhibit. Here we apply an mRNA display technology integrated with genetic code reprogramming, referred to as the RaPID (random non-standard peptides integrated discovery) system, to identify macrocyclic peptides with high binding affinities for O-GlcNAc transferase (OGT). These macrocycles inhibit OGT activity through an allosteric mechanism that is driven by their binding to the tetratricopeptide repeats of OGT. Saturation mutagenesis in a maturation screen using 39 amino acids, including 22 non-canonical residues, led to an improved unnatural macrocycle that is ≈40 times more potent than the parent compound (Ki app =1.5 nM). Subsequent derivatization delivered a biotinylated derivative that enabled one-step affinity purification of OGT from complex samples. The high potency and novel mechanism of action of these OGT ligands should enable new approaches to elucidate the specificity and regulation of OGT.
Collapse
Affiliation(s)
- Matthew G Alteen
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Hayden Peacock
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Richard W Meek
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Jil A Busmann
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Sha Zhu
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Gideon J Davies
- York Structural Biology Laboratory, Department of Chemistry, University of York, York, YO10 5DD, UK
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Bunkyo-ku, Tokyo, 113-0033, Japan
| | - David J Vocadlo
- Department of Chemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| |
Collapse
|
9
|
Saunders GJ, Yudin AK. A focus on the discovery of potent and selective cyclic peptide scaffolds for drug development. Chem Sci 2022; 13:12942-12944. [PMID: 36425493 PMCID: PMC9667955 DOI: 10.1039/d2sc90214a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2024] Open
Abstract
In the past, cyclic peptide drugs were commonly discovered by isolation of natural products. However, recent efforts predominantly use high-throughput synthetic or genetically encoded libraries to find potent and selective hits against a range of challenging therapeutic targets. Kawamura et al. (Chem. Sci., 2022, 13, 3256-3262, https://doi.org/10.1039/D1SC06844J) developed a new workflow that can be applied to mRNA display, using high-throughput clustering, SAR investigations and in silico structural studies. This led to the discovery of nanomolar, serum-stable cyclic peptides against the human glucose-dependent insulinotropic peptide receptor (hGIP-R).
Collapse
Affiliation(s)
- George J Saunders
- Davenport Research Laboratories, University of Toronto 80 St. George St Toronto M5S 3H6 Ontario Canada
| | - Andrei K Yudin
- Davenport Research Laboratories, University of Toronto 80 St. George St Toronto M5S 3H6 Ontario Canada
| |
Collapse
|