1
|
Yang M, Yuan W, Li XY, Liu B, Zhou H. Metal-organic framework with pore contraction and modification by diethylammonium cations for record SO 2/CO 2 separation. Chem Commun (Camb) 2024; 60:12754-12757. [PMID: 39400004 DOI: 10.1039/d4cc04382k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
A robust MOF with diethylammonium cations in its pores, enhances pore partitioning and modifies the environment, enabling selective and dense SO2 packing through hydrogen bonds. It achieves a reversible SO2 uptake with a high adsorption enthalpy and record IAST selectivity of 1182 for SO2/CO2 at 298 K and 1 bar.
Collapse
Affiliation(s)
- Mei Yang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Wenke Yuan
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Xiu-Yuan Li
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, China.
| | - Bo Liu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| | - Huifang Zhou
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
2
|
Obeso JL, López Cervantes VB, Flores CV, García-Carvajal C, Garduño-Albino CE, Peralta RA, Trejos VM, Huerta Arcos L, Ibarra IA, Solis-Ibarra D, Cordero-Sánchez S, Portillo-Vélez NS, Esparza-Schulz JM. APTES functionalization in SBA-15: the effect on SO 2 capture and detection applications. Dalton Trans 2024; 53:12208-12214. [PMID: 38973674 DOI: 10.1039/d4dt01283f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
The development of adsorbents for air pollutant remediation and effective monitoring is of interest. Then, the effect of the APTES functionalization ratio on the impact of the adsorption and detection of SO2 molecules was evaluated. The higher APTES functionalization material (SBA-15_6.1APTES) shows a high uptake of 1.15 mmol g-1 at 0.001 bar and 298 K. Fluorescence, time-resolved photoluminescence, and quantum yield experiments revealed a turn-on effect specifically for SO2 molecules, indicating high selectivity, suggesting host-to-guest energy transfer. Attractively, XPS measurement provided an understanding of the mechanism, suggesting hydrogen bonding and dipole-dipole interactions as the main interactions between SO2 molecules and SBA-15_6.1APTES. DFT calculations were performed to confirm these interactions. Furthermore, this study highlights the application of SBA-15 materials with different amino modifications for SO2 treatment and provides insight into the interaction mechanism using experimental techniques.
Collapse
Affiliation(s)
- Juan L Obeso
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Irrigación, 11500, Miguel Hidalgo, CDMX, Mexico.
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico
| | - Valeria B López Cervantes
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico
| | - Catalina V Flores
- Instituto Politécnico Nacional, CICATA U. Legaria, Laboratorio Nacional de Ciencia, Tecnología y Gestión Integrada del Agua (LNAgua), Legaria 694, Irrigación, 11500, Miguel Hidalgo, CDMX, Mexico.
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico
| | - Celene García-Carvajal
- Laboratorio de Sólidos Porosos (LabSoP) - INFAP-CONICET, Universidad Nacional de San Luis, San Luis, Argentina
| | - Carlos E Garduño-Albino
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana (UAM-I), 09340 México City, Mexico
| | - Ricardo A Peralta
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana (UAM-I), 09340 México City, Mexico
| | - Víctor M Trejos
- Laboratorio de Fisicoquímica de Superficies, Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Leyes de Reforma 1ra Sección, Iztapalapa, Ciudad de México 09310, Mexico
| | - L Huerta Arcos
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico
- On Sabbatical as "Catedra Dr. Douglas Hugh Everett" at Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Leyes de Reforma 1ra Sección, Iztapalapa, Ciudad de México 09310, Mexico
| | - Diego Solis-Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, CU, Coyoacán, 04510, Ciudad de México, Mexico
| | - Salomón Cordero-Sánchez
- Laboratorio de Fisicoquímica de Superficies, Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Leyes de Reforma 1ra Sección, Iztapalapa, Ciudad de México 09310, Mexico
| | - Nora S Portillo-Vélez
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana (UAM-I), 09340 México City, Mexico
| | - J Marcos Esparza-Schulz
- Laboratorio de Fisicoquímica de Superficies, Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Avenida San Rafael Atlixco 186, Leyes de Reforma 1ra Sección, Iztapalapa, Ciudad de México 09310, Mexico
| |
Collapse
|
3
|
Jia J, Bhatt PM, Tavares SR, Abou-Hamad E, Belmabkhout Y, Jiang H, Mallick A, Parvatkar PT, Maurin G, Eddaoudi M. Porous Organic Polymers for Efficient and Selective SO 2 Capture from CO 2-rich Flue Gas. Angew Chem Int Ed Engl 2024; 63:e202318844. [PMID: 38785268 DOI: 10.1002/anie.202318844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Indexed: 05/25/2024]
Abstract
The quest for effective technologies to reduce SO2 pollution is crucial due to its adverse effects on the environment and human health. Markedly, removing a ppm level of SO2 from CO2-containing waste gas is a persistent challenge, and current technologies suffer from low SO2/CO2 selectivity and energy-intensive regeneration processes. Here using the molecular building blocks approach and theoretical calculation, we constructed two porous organic polymers (POPs) encompassing pocket-like structures with exposed imidazole groups, promoting preferential interactions with SO2 from CO2-containing streams. Markedly, the evaluated POPs offer outstanding SO2/CO2 selectivity, high SO2 capacity, and an easy regeneration process, making it one of the best materials for SO2 capture. To gain better structural insights into the notable SO2 selectivity of the POPs, we used dynamic nuclear polarization NMR spectroscopy (DNP) and molecular modelling to probe the interactions between SO2 and POP adsorbents. The newly developed materials are poised to offer an energy-efficient and environment-friendly SO2 separation process while we are obliged to use fossil fuels for our energy needs.
Collapse
Affiliation(s)
- Jiangtao Jia
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China
| | - Prashant M Bhatt
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Sergio R Tavares
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier, France
- Instituto de Pesquisas de Produtos Naturais Walter Mors, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21941-599, Brasil
| | - Edy Abou-Hamad
- King Abdullah University of Science and Technology (KAUST), Core Labs, Thuwal, 23955-6900, Saudi Arabia
| | - Youssef Belmabkhout
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Hao Jiang
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Arijit Mallick
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Prakash T Parvatkar
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | | | - Mohamed Eddaoudi
- Functional Materials Design, Discovery and Development Research Group (FMD3), Advanced Membranes and Porous Materials Center (AMPMC), Division of Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| |
Collapse
|
4
|
Yu L, He M, Yao J, Xia Q, Yang S, Li J, Wang H. A robust aluminum-octacarboxylate framework with scu topology for selective capture of sulfur dioxide. Chem Sci 2024; 15:8530-8535. [PMID: 38846381 PMCID: PMC11151831 DOI: 10.1039/d4sc01877j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
The high structural diversity and porosity of metal-organic frameworks (MOFs) promote their applications in selective gas adsorption. The development of robust MOFs that are stable against corrosive SO2 remains a daunting challenge. Here, we report a highly robust aluminum-based MOF (HIAM-330) built on a 4-connected Al3(OH)2(COO)4 cluster and 8-connected octacarboxylate ligand with a (4,8)-connected scu topology. It exhibits a fully reversible SO2 uptake of 12.1 mmol g-1 at 298 K and 1 bar. It is capable of selective capture of SO2 over other gases (CO2, CH4, and N2) with high adsorption selectivities of 60, 330, and 3537 for equimolar mixtures of SO2/CO2, SO2/CH4, and SO2/N2, respectively, at 298 K and 1 bar. Breakthrough measurements verified the capability of HIAM-330 for selective capture of SO2 (2500 ppm) over CO2 or N2. High-resolution synchrotron X-ray powder diffraction of SO2 loaded HIAM-330 revealed the binding domains of adsorbed SO2 molecules and host-guest interactions.
Collapse
Affiliation(s)
- Liang Yu
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic 7098 Liuxian Blvd., Nanshan Shenzhen 518055 P. R. China
| | - Meng He
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
| | - Jinze Yao
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Qibin Xia
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Sihai Yang
- Department of Chemistry, University of Manchester Manchester M13 9PL UK
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 China
| | - Jing Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic 7098 Liuxian Blvd., Nanshan Shenzhen 518055 P. R. China
- Department of Chemistry and Chemical Biology, Rutgers University 123 Bevier Road Piscataway NJ 08854 USA
| | - Hao Wang
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic 7098 Liuxian Blvd., Nanshan Shenzhen 518055 P. R. China
| |
Collapse
|
5
|
Yu CX, Jiang W, Lei M, Yao MR, Sun XQ, Wang Y, Liu W, Liu LL. Fabrication of Carboxylate-Functionalized 2D MOF Nanosheet with Caged Cavity for Efficient and Selective Extraction of Uranium from Aqueous Solution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308910. [PMID: 38150628 DOI: 10.1002/smll.202308910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/29/2023] [Indexed: 12/29/2023]
Abstract
The efficient removal of radioactive uranium from aqueous solution is of great significance for the safe and sustainable development of nuclear power. An ultrathin 2D metal-organic framework (MOF) nanosheet with cavity structures was elaborately fabricated based on a calix[4]arene ligand. Incorporating the permanent cavity structures on MOF nanosheet can fully utilize its structural characteristics of largely exposed surface area and accessible adsorption sites in pollutant removal, achieving ultrafast adsorption kinetics, and the functionalized cavity structure would endow the MOF nanosheets with the ability to achieve preconcentration and extraction of uranium from aqueous solution, affording ultrahigh removal efficiency even in ultra-low concentrations. Thus, more than 97% uranium can be removed from the concentration range of 50-500 µg L-1 within 5 min. Moreover, the 2D nano-material exhibits ultra-high anti-interference ability, which can efficiently remove uranium from groundwater and seawater. The adsorption mechanism was investigated by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FT-IR) analysis, and density functional theory (DFT) calculations, which revealed that the cavity structure plays an important role in uranium capture. This study not only realizes highly efficient uranium removal from aqueous solution but also opens the door to achieving ultrathin MOF nanosheets with cavity structures, which will greatly expand the applications of MOF nanosheets.
Collapse
Affiliation(s)
- Cai-Xia Yu
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Wen Jiang
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Min Lei
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Meng-Ru Yao
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Xue-Qin Sun
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Yanlong Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, P. R. China
| | - Wei Liu
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, P. R. China
| | - Lei-Lei Liu
- School of Environmental and Material Engineering, Yantai University, Yantai, 264005, P. R. China
| |
Collapse
|
6
|
Heo CY, Díaz-Ramírez ML, Park SH, Kang M, Hong CS, Jeong NC. Solvent-Driven Dynamics: Crafting Tailored Transformations of Cu(II)-Based MOFs. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9068-9077. [PMID: 38345827 DOI: 10.1021/acsami.3c18858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Metal-organic frameworks (MOFs), a sort of crystalline porous coordination polymers composed of metal ions and organic linkers, have been intensively studied for their ability to take up nonpolar gas-phase molecules such as ethane and ethylene. In this context, interpenetrated MOFs, where multiple framework nets are entwined, have been considered promising materials for capturing nonpolar molecules due to their relatively higher stability and smaller micropores. This study explores a solvent-assisted reversible strategy to interpenetrate and deinterpenetrate a Cu(II)-based MOF, namely, MOF-143 (noninterpenetrated form) and MOF-14 (doubly interpenetrated forms). Interpenetration was achieved using protic solvents with small molecular sizes such as water, methanol, and ethanol, while deinterpenetration was accomplished with a Lewis-basic solvent, pyridine. Additionally, this study investigates the adsorptive separation of ethane and ethylene, which is a significant application in the chemical industry. The results showed that interpenetrated MOF-14 exhibited higher ethane and ethylene uptakes compared to the noninterpenetrated MOF-143 due to narrower micropores. Furthermore, we demonstrate that pristine MOF-14 displayed higher ethane selectivity than transformed MOF-14 from MOF-143 by identifying the "fraction of micropore volume" as a key factor influencing ethane uptake. These findings highlight the potential of controlled transformations between interpenetrated and noninterpenetrated MOFs, anticipating that larger MOF crystals with narrower micropores and higher crystallinity will be more suitable for selective gas capture and separation applications.
Collapse
Affiliation(s)
- Cheol Yeong Heo
- Department of Physics and Chemistry, DGIST, Daegu 42988, Korea
| | - Mariana L Díaz-Ramírez
- Department of Physics and Chemistry, DGIST, Daegu 42988, Korea
- Center for Basic Science, DGIST, Daegu 42988, Korea
| | - Sun Ho Park
- Department of Physics and Chemistry, DGIST, Daegu 42988, Korea
| | - Minjung Kang
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Nak Cheon Jeong
- Department of Physics and Chemistry, DGIST, Daegu 42988, Korea
- Center for Basic Science, DGIST, Daegu 42988, Korea
| |
Collapse
|
7
|
Gong W, Xie Y, Yamano A, Ito S, Tang X, Reinheimer EW, Malliakas CD, Dong J, Cui Y, Farha OK. Modulator-Dependent Dynamics Synergistically Enabled Record SO 2 Uptake in Zr(IV) Metal-Organic Frameworks Based on Pyrene-Cored Molecular Quadripod Ligand. J Am Chem Soc 2023. [PMID: 38037882 DOI: 10.1021/jacs.3c09648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Developing innovative porous solid sorbents for the capture and storage of toxic SO2 is crucial for energy-efficient transportation and subsequent processing. Nonetheless, the quest for high-performance SO2 sorbents, characterized by exceptional uptake capacity, minimal regeneration energy requirements, and outstanding recyclability under ambient conditions, remains a significant challenge. In this study, we present the design of a unique tertiary amine-embedded, pyrene-based quadripod-shaped ligand. This ligand is then assembled into a highly porous Zr-metal-organic framework (MOF) denoted as Zr-TPA, which exhibits a newly discovered 3,4,8-c woy net structure. Remarkably, our Zr-TPA MOF achieved an unprecedented SO2 sorption capacity of 22.7 mmol g-1 at 298 K and 1 bar, surpassing those of all previously reported solid sorbents. We elucidated the distinct SO2 sorption behaviors observed in isostructural Zr-TPA variants synthesized with different capping modulators (formate, acetate, benzoate, and trifluoroacetate, abbreviated as FA, HAc, BA, and TFA, respectively) through computational analyses. These analyses revealed unexpected SO2-induced modulator-node dynamics, resulting in transient chemisorption that enhanced synergistic SO2 sorption. Additionally, we conducted a proof-of-concept experiment demonstrating that the captured SO2 in Zr-TPA-FA can be converted in situ into a valuable pharmaceutical intermediate known as aryl N-aminosulfonamide, with a high yield and excellent recyclability. This highlights the potential of robust Zr-MOFs for storing SO2 in catalytic applications. In summary, this work contributes significantly to the development of efficient SO2 solid sorbents and advances our understanding of the molecular mechanisms underlying SO2 sorption in Zr-MOF materials.
Collapse
Affiliation(s)
- Wei Gong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi Xie
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Akihito Yamano
- Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima, Tokyo 196-8666, Japan
| | - Sho Ito
- Rigaku Corporation, 3-9-12 Matsubara-cho, Akishima, Tokyo 196-8666, Japan
| | - Xianhui Tang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Eric W Reinheimer
- Rigaku Americas Corporation, 9009 New Trails Drive, The Woodlands, Texas 77381, United States
| | - Christos D Malliakas
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
| | - Jinqiao Dong
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Omar K Farha
- Department of Chemistry and International Institute for Nanotechnology (IIN), Northwestern University, Evanston, Illinois 60208, United States
- Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
8
|
Baumgartner B, Prins PT, Louwen JN, Monai M, Weckhuysen BM. The Role of Water in Carbon Dioxide Adsorption in Porphyrinic Metal-Organic Frameworks. ChemCatChem 2023; 15:e202300722. [PMID: 38505862 PMCID: PMC10946852 DOI: 10.1002/cctc.202300722] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/10/2023] [Indexed: 03/21/2024]
Abstract
Capturing and converting CO2 through artificial photosynthesis using photoactive, porous materials is a promising approach for addressing increasing CO2 concentrations. Porphyrinic Zr-based metal-organic frameworks (MOFs) are of particular interest as they incorporate a photosensitizer in the porous structure. Herein, the initial step of the artificial photosynthesis is studied: CO2 sorption and activation in the presence of water. A combined vibrational and visible spectroscopic approach was used to monitor the adsorption of CO2 into PCN-222 and PCN-223 MOFs, and the photophysical changes of the porphyrinic linker as a function of water concentration. A shift in CO2 sorption site and bending of the porphyrin macrocycle in response to humidity was observed, and CO2/H2O competition experiments revealed that the exchange of CO2 with H2O is pore-size dependent. Therefore, humidity and pore-size can be used to tune CO2 sorption, CO2 capacity, and light harvesting in porphyrinic MOFs, which are key factors for CO2 photoreduction.
Collapse
Affiliation(s)
- Bettina Baumgartner
- Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Department of ChemistryUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - P. Tim Prins
- Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Department of ChemistryUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Jaap N. Louwen
- Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Department of ChemistryUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Matteo Monai
- Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Department of ChemistryUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Bert M. Weckhuysen
- Debye Institute for Nanomaterials Science and Institute for Sustainable and Circular Chemistry, Department of ChemistryUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| |
Collapse
|