1
|
Sahoo S, Ghosh S, Areekkadan AM, Chakrabarty A, Banerjee R. Cancer Cell-Selective Inhibition of Migration by Styrenic Catiomer Emulsions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53599-53609. [PMID: 39340815 DOI: 10.1021/acsami.4c14410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2024]
Abstract
Cancer metastasis remains the most formidable cause of mortality and morbidity in cancer patients. Developing an effective and economical method toward cancer antimetastatic strategy demands immediate attention in anticancer therapy. Herein, we followed a cost-effective greener method for preparing a small family of amphiphilic catiomers with varied styrene content (45, 63, and 83%), which revealed the unique potential of promoting normal cell migration while retarding cancer metastasis. The styrenic polymers formed micellar self-assembly in aqueous phase and exhibited a cationic charge. Polymers were quite nontoxic up to 200 μg/mL concentration toward human embryonic kidney cell HEK293 as well as human, triple negative breast cancer cell MDAMB-231, mouse melanoma cell B16F10, and human oral squamous carcinoma cell FaDu. Confocal imaging and fluorescence activated cell sorting (FACS) showed effective incorporation of polymers within cells. Interestingly, the polymer-treated HEK293 cells underwent prominent wound healing in scratch assay. However, the as-synthesized polymer-treated cancer cells resisted migration as analyzed from the scratch assay. A mechanistic study using immunoblotting assay established upregulation of migratory proteins vimentin and TGF-β and downregulation of E-cadherin in normal HEK293 cells. Remarkably, this trend was completely reversed in cancer cell MDAMB-231. This study describes the extraordinary potential of styrenic catiomers as wound healers for normal cells while inhibiting cancer metastasis.
Collapse
Affiliation(s)
- Subhasish Sahoo
- Department of Oils, Lipid Science & Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Souma Ghosh
- Department of Oils, Lipid Science & Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abdul Malik Areekkadan
- Department of Polymers & Functional Materials, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Arindam Chakrabarty
- Department of Polymers & Functional Materials, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajkumar Banerjee
- Department of Oils, Lipid Science & Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Morrell AH, Warren NJ, Thornton PD. The Production of Polysarcosine-Containing Nanoparticles by Ring-Opening Polymerization-Induced Self-Assembly. Macromol Rapid Commun 2024; 45:e2400103. [PMID: 38597209 DOI: 10.1002/marc.202400103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/02/2024] [Indexed: 04/11/2024]
Abstract
N-carboxyanhydride ring-opening polymerization-induced self-assembly (NCA ROPISA) offers a convenient route for generating poly(amino acid)-based nanoparticles in a single step, crucially avoiding the need for post-polymerization self-assembly. Most examples of NCA ROPISA make use of a poly(ethylene glycol) (PEG) hydrophilic stabilizing block, however this non-biodegradable, oil-derived polymer may cause an immunological response in some individuals. Alternative water-soluble polymers are therefore highly sought. This work reports the synthesis of wholly poly(amino acid)-based nanoparticles, through the chain-extension of a polysarcosine macroinitiator with L-Phenylalanine-NCA (L-Phe-NCA) and Alanine-NCA (Ala-NCA), via aqueous NCA ROPISA. The resulting polymeric structures comprise of predominantly anisotropic, rod-like nanoparticles, with morphologies primarily influenced by the secondary structure of the hydrophobic poly(amino acid) that enables their formation.
Collapse
Affiliation(s)
- Anna H Morrell
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Nicholas J Warren
- School of Chemical and Process Engineering, University of Leeds, Leeds, LS2 9JT, UK
| | - Paul D Thornton
- Leeds Institute of Textiles and Colour (LITAC), School of Design, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
3
|
Fang S, Zhang K, Liu D, Yang Y, Xi H, Xie W, Diao K, Rao Z, Wang D, Yang W. Polyphenol-based polymer nanoparticles for inhibiting amyloid protein aggregation: recent advances and perspectives. Front Nutr 2024; 11:1408620. [PMID: 39135555 PMCID: PMC11317421 DOI: 10.3389/fnut.2024.1408620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/17/2024] [Indexed: 08/15/2024] Open
Abstract
Polyphenols are a group of naturally occurring compounds that possess a range of biological properties capable of potentially mitigating or preventing the progression of age-related cognitive decline and Alzheimer's disease (AD). AD is a chronic neurodegenerative disease known as one of the fast-growing diseases, especially in the elderly population. Moreover, as the primary etiology of dementia, it poses challenges for both familial and societal structures, while also imposing a significant economic strain. There is currently no pharmacological intervention that has demonstrated efficacy in treating AD. While polyphenols have exhibited potential in inhibiting the pathological hallmarks of AD, their limited bioavailability poses a significant challenge in their therapeutic application. Furthermore, in order to address the therapeutic constraints, several polymer nanoparticles are being explored as improved therapeutic delivery systems to optimize the pharmacokinetic characteristics of polyphenols. Polymer nanoparticles have demonstrated advantageous characteristics in facilitating the delivery of polyphenols across the blood-brain barrier, resulting in their efficient distribution within the brain. This review focuses on amyloid-related diseases and the role of polyphenols in them, in addition to discussing the anti-amyloid effects and applications of polyphenol-based polymer nanoparticles.
Collapse
Affiliation(s)
- Shuzhen Fang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, China
| | - Kangyi Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Food Nutrition and Safety, School of Tea, Food Science and Technology, Anhui Agricultural University, Hefei, China
| | - Danqing Liu
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, China
| | - Yulong Yang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, China
| | - Hu Xi
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, China
| | - Wenting Xie
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, China
| | - Ke Diao
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhihong Rao
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, China
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang, China
| | - Wenming Yang
- The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui, China
- Center for Xin'an Medicine and Modernization of Traditional Chinese Medicine, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China
- Key Laboratory of Xin'an Medicine, Ministry of Education, Hefei, Anhui, China
| |
Collapse
|
4
|
Skandalis A, Sentoukas T, Selianitis D, Balafouti A, Pispas S. Using RAFT Polymerization Methodologies to Create Branched and Nanogel-Type Copolymers. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1947. [PMID: 38730753 PMCID: PMC11084462 DOI: 10.3390/ma17091947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/13/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024]
Abstract
This review aims to highlight the most recent advances in the field of the synthesis of branched copolymers and nanogels using reversible addition-fragmentation chain transfer (RAFT) polymerization. RAFT polymerization is a reversible deactivation radical polymerization technique (RDRP) that has gained tremendous attention due to its versatility, compatibility with a plethora of functional monomers, and mild polymerization conditions. These parameters lead to final polymers with good control over the molar mass and narrow molar mass distributions. Branched polymers can be defined as the incorporation of secondary polymer chains to a primary backbone, resulting in a wide range of complex macromolecular architectures, like star-shaped, graft, and hyperbranched polymers and nanogels. These subcategories will be discussed in detail in this review in terms of synthesis routes and properties, mainly in solutions.
Collapse
Affiliation(s)
- Athanasios Skandalis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (D.S.); (A.B.)
| | - Theodore Sentoukas
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Sklodowska Street, 41-819 Zabrze, Poland
| | - Dimitrios Selianitis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (D.S.); (A.B.)
| | - Anastasia Balafouti
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (D.S.); (A.B.)
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece; (D.S.); (A.B.)
| |
Collapse
|
5
|
Zhang S, Li R, An Z. Degradable Block Copolymer Nanoparticles Synthesized by Polymerization-Induced Self-Assembly. Angew Chem Int Ed Engl 2024; 63:e202315849. [PMID: 38155097 DOI: 10.1002/anie.202315849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 12/30/2023]
Abstract
Polymerization-induced self-assembly (PISA) combines polymerization and in situ self-assembly of block copolymers in one system and has become a widely used method to prepare block copolymer nanoparticles at high concentrations. The persistence of polymers in the environment poses a huge threat to the ecosystem and represents a significant waste of resources. There is an urgent need to develop novel chemical approaches to synthesize degradable polymers. To meet with this demand, it is crucial to install degradability into PISA nanoparticles. Most recently, degradable PISA nanoparticles have been synthesized by introducing degradation mechanisms into either shell-forming or core-forming blocks. This Minireview summarizes the development in degradable block copolymer nanoparticles synthesized by PISA, including shell-degradable, core-degradable, and all-degradable nanoparticles. Future development will benefit from expansion of polymerization techniques with new degradation mechanisms and adaptation of high-throughput approaches for both PISA syntheses and degradation studies.
Collapse
Affiliation(s)
- Shudi Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Ruoyu Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zesheng An
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
6
|
Farmer MH, Musa OM, Haug I, Naumann S, Armes SP. Synthesis of Poly(propylene oxide)-Poly( N,N'-dimethylacrylamide) Diblock Copolymer Nanoparticles via Reverse Sequence Polymerization-Induced Self-Assembly in Aqueous Solution. Macromolecules 2024; 57:317-327. [PMID: 38222027 PMCID: PMC10782481 DOI: 10.1021/acs.macromol.3c01939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 01/16/2024]
Abstract
Sterically-stabilized diblock copolymer nanoparticles comprising poly(propylene oxide) (PPO) cores are prepared via reverse sequence polymerization-induced self-assembly (PISA) in aqueous solution. N,N'-Dimethylacrylamide (DMAC) acts as a cosolvent for the weakly hydrophobic trithiocarbonate-capped PPO precursor. Reversible addition-fragmentation chain transfer (RAFT) polymerization of DMAC is initially conducted at 80% w/w solids with deoxygenated water. At 30-60% DMAC conversion, the reaction mixture is diluted to 5-25% w/w solids. The PPO chains become less solvated as the DMAC monomer is consumed, which drives in situ self-assembly to form aqueous dispersions of PPO-core nanoparticles of 120-190 nm diameter at 20 °C. Such RAFT polymerizations are well-controlled (Mw/Mn ≤ 1.31), and more than 99% DMAC conversion is achieved. The resulting nanoparticles exhibit thermoresponsive character: dynamic light scattering and transmission electron microscopy studies indicate the formation of more compact spherical nanoparticles of approximately 33 nm diameter on heating to 70 °C. Furthermore, 15-25% w/w aqueous dispersions of such nanoparticles formed micellar gels that undergo thermoreversible (de)gelation on cooling to 5 °C.
Collapse
Affiliation(s)
- Matthew
A. H. Farmer
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Osama M. Musa
- Ashland
Specialty Ingredients, 1005 US 202/206, Bridgewater, New Jersey 08807, United States
| | - Iris Haug
- Institute
of Polymer Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Stefan Naumann
- Institute
of Polymer Chemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | - Steven P. Armes
- Department
of Chemistry, University of Sheffield, Dainton Building, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| |
Collapse
|
7
|
Xu C, Zheng MX, Wei Y, Yuan JY. Liquid Crystalline Nanoparticles via Polymerization-Induced Self-Assembly: Morphology Evolution and Function Regulation. Chemistry 2023:e202303586. [PMID: 38079233 DOI: 10.1002/chem.202303586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Indexed: 01/16/2024]
Abstract
Liquid crystalline nanoparticles (LC NPs) are a kind of polymer NPs with LC mesogens, which can form special anisotropic morphologies due to the influence of LC ordering. Owing to the stimuli-responsiveness of the LC blocks, LC NPs show abundant morphology evolution behaviors in response to external regulation. LC NPs have great application potential in nano-devices, drug delivery, special fibers and other fields. Polymerization-induced self-assembly (PISA) method can synthesize LC NPs at high solid content, reducing the harsh demand for reaction solvent of the LC polymers, being a better choice for large-scale production. In this review, we introduced recent research progress of PISA-LC NPs by dividing them into several parts according to the LC mesogen, and discussed the improvement of experimental conditions and the potential application of these polymers.
Collapse
Affiliation(s)
- Chang Xu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ming-Xin Zheng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yen Wei
- Key Lab of Bioorganic Phosphorus Chemistry and Chemical Biology of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jin-Ying Yuan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
8
|
Wu X, Barner-Kowollik C. Fluorescence-readout as a powerful macromolecular characterisation tool. Chem Sci 2023; 14:12815-12849. [PMID: 38023522 PMCID: PMC10664555 DOI: 10.1039/d3sc04052f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The last few decades have witnessed significant progress in synthetic macromolecular chemistry, which can provide access to diverse macromolecules with varying structural complexities, topology and functionalities, bringing us closer to the aim of controlling soft matter material properties with molecular precision. To reach this goal, the development of advanced analytical techniques, allowing for micro-, molecular level and real-time investigation, is essential. Due to their appealing features, including high sensitivity, large contrast, fast and real-time response, as well as non-invasive characteristics, fluorescence-based techniques have emerged as a powerful tool for macromolecular characterisation to provide detailed information and give new and deep insights beyond those offered by commonly applied analytical methods. Herein, we critically examine how fluorescence phenomena, principles and techniques can be effectively exploited to characterise macromolecules and soft matter materials and to further unravel their constitution, by highlighting representative examples of recent advances across major areas of polymer and materials science, ranging from polymer molecular weight and conversion, architecture, conformation to polymer self-assembly to surfaces, gels and 3D printing. Finally, we discuss the opportunities for fluorescence-readout to further advance the development of macromolecules, leading to the design of polymers and soft matter materials with pre-determined and adaptable properties.
Collapse
Affiliation(s)
- Xingyu Wu
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics, Centre for Materials Science, Queensland University of Technology (QUT) 2 George Street Brisbane QLD 4000 Australia
- Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
9
|
Ulker D, Neal TJ, Crawford A, Armes SP. Thermoresponsive Poly( N, N'-dimethylacrylamide)-Based Diblock Copolymer Worm Gels via RAFT Solution Polymerization: Synthesis, Characterization, and Cell Biology Applications. Biomacromolecules 2023; 24:4285-4302. [PMID: 37616242 PMCID: PMC10498450 DOI: 10.1021/acs.biomac.3c00635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/09/2023] [Indexed: 08/26/2023]
Abstract
RAFT solution polymerization is used to polymerize 2-hydroxypropyl methacrylate (HPMA). The resulting PHPMA precursor is then chain-extended using N,N'-dimethylacrylamide (DMAC) to produce a series of thermoresponsive PHPMA-PDMAC diblock copolymers. Such amphiphilic copolymers can be directly dispersed in ice-cold water and self-assembled at 20 °C to form spheres, worms, or vesicles depending on their copolymer composition. Construction of a pseudo-phase diagram is required to identify the pure worm phase, which corresponds to a rather narrow range of PDMAC DPs. Such worms form soft, free-standing gels in aqueous solution at around ambient temperature. Rheology studies confirm the thermoresponsive nature of such worms, which undergo a reversible worm-to-sphere on cooling below ambient temperature. This morphological transition leads to in situ degelation, and variable temperature 1H NMR studies indicate a higher degree of (partial) hydration for the weakly hydrophobic PHPMA chains at lower temperatures. The trithiocarbonate end-group located at the end of each PDMAC chain can be removed by treatment with excess hydrazine. The resulting terminal secondary thiol group can form disulfide bonds via coupling, which produces PHPMA-PDMAC-PHPMA triblock copolymer chains. Alternatively, this reactive thiol group can be used for conjugation reactions. A PHPMA141-PDMAC36 worm gel was used to store human mesenchymal stem cells (MSCs) for up to three weeks at 37 °C. MSCs retrieved from this gel subsequently underwent proliferation and maintained their ability to differentiate into osteoblastic cells.
Collapse
Affiliation(s)
- Damla Ulker
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, UK
- Faculty
of Pharmacy, Department of Pharmaceutical Basic Sciences, Near East University, Nicosia, Northern Cyprus TR-99138, Turkey
| | - Thomas J. Neal
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, UK
| | - Aileen Crawford
- School
of Clinical Dentistry, University of Sheffield, Claremont Crescent, Sheffield, South Yorkshire S10 2TA, UK
| | - Steven P. Armes
- Dainton
Building, Department of Chemistry, University
of Sheffield, Brook Hill, Sheffield, South
Yorkshire S3 7HF, UK
| |
Collapse
|
10
|
Buksa H, Neal TJ, Varlas S, Hunter SJ, Musa OM, Armes SP. Synthesis and Characterization of Charge-Stabilized Poly(4-hydroxybutyl acrylate) Latex by RAFT Aqueous Dispersion Polymerization: A New Precursor for Reverse Sequence Polymerization-Induced Self-Assembly. Macromolecules 2023; 56:4296-4306. [PMID: 37333840 PMCID: PMC10273316 DOI: 10.1021/acs.macromol.3c00534] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/12/2023] [Indexed: 06/20/2023]
Abstract
The reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 4-hydroxybutyl acrylate (HBA) is conducted using a water-soluble RAFT agent bearing a carboxylic acid group. This confers charge stabilization when such syntheses are conducted at pH 8, which leads to the formation of polydisperse anionic PHBA latex particles of approximately 200 nm diameter. The weakly hydrophobic nature of the PHBA chains confers stimulus-responsive behavior on such latexes, which are characterized by transmission electron microscopy, dynamic light scattering, aqueous electrophoresis, and 1H NMR spectroscopy. Addition of a suitable water-miscible hydrophilic monomer such as 2-(N-(acryloyloxy)ethyl pyrrolidone) (NAEP) leads to in situ molecular dissolution of the PHBA latex, with subsequent RAFT polymerization leading to the formation of sterically stabilized PHBA-PNAEP diblock copolymer nanoparticles of approximately 57 nm diameter. Such formulations constitute a new approach to reverse sequence polymerization-induced self-assembly, whereby the hydrophobic block is prepared first in aqueous media.
Collapse
Affiliation(s)
- Hubert Buksa
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Thomas J. Neal
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Spyridon Varlas
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Saul J. Hunter
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| | - Osama M. Musa
- Ashland
Specialty Ingredients, 1005 US 202/206, Bridgewater, New Jersey 08807, United States
| | - Steven P. Armes
- Department
of Chemistry, University of Sheffield, Brook Hill, Sheffield, South Yorkshire S3 7HF, U.K.
| |
Collapse
|
11
|
Shape-Shifting Thermoresponsive Block Copolymer Nano-Objects. J Colloid Interface Sci 2023; 634:906-920. [PMID: 36566636 DOI: 10.1016/j.jcis.2022.12.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
In this Feature Article, we review our recent progress in the design of shape-shifting thermoresponsive diblock copolymer nano-objects, which are prepared using various hydroxyl-functional (meth)acrylic monomers (e.g. 2‑hydroxypropyl methacrylate, 4‑hydroxybutyl acrylate or hydroxybutyl methacrylate) to generate the thermoresponsive block. Unlike traditional thermoresponsive polymers such as poly(N-isopropylacrylamide), there is no transition between soluble and insoluble polymer chains in aqueous solution. Instead, thermally driven transitions between a series of copolymer morphologies (e.g. spheres, worms, vesicles or lamellae) occur on adjusting the aqueous solution temperature owing to a subtle change in the partial degree of hydration of the permanently insoluble thermoresponsive block. Such remarkable self-assembly behavior is unprecedented in colloid science: no other amphiphilic diblock copolymer or surfactant system undergoes such behavior at a fixed chemical composition and concentration. Such shape-shifting nano-objects are characterized by transmission electron microscopy, dynamic light scattering, small-angle X-ray scattering, rheology and variable temperature 1H NMR spectroscopy. Potential applications for this fascinating new class of amphiphiles are briefly considered.
Collapse
|
12
|
Lukáš Petrova S, Sincari V, Konefał R, Pavlova E, Hrubý M, Pokorný V, Jäger E. Microwave Irradiation-Assisted Reversible Addition-Fragmentation Chain Transfer Polymerization-Induced Self-Assembly of pH-Responsive Diblock Copolymer Nanoparticles. ACS OMEGA 2022; 7:42711-42722. [PMID: 36467927 PMCID: PMC9713868 DOI: 10.1021/acsomega.2c04036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/18/2022] [Indexed: 06/17/2023]
Abstract
Herein, we present a versatile platform for the synthesis of pH-responsive poly([N-(2-hydroxypropyl)]methacrylamide)-b-poly[2-(diisopropylamino)ethyl methacrylate] diblock copolymer (PHPMA-b-PDPA) nanoparticles (NPs) obtained via microwave-assisted reversible addition-fragmentation chain transfer polymerization-induced self-assembly (MWI-PISA). The N-(2-hydroxypropyl) methacrylamide (HPMA) monomer was first polymerized to obtain a macrochain transfer agent with polymerization degrees (DPs) of 23 and 51. Subsequently, using mCTA and 2-(diisopropylamino)ethyl methacrylate (DPA) as monomers, we successfully conducted MWI-PISA emulsion polymerization in aqueous solution with a solid content of 10 wt %. The NPs were obtained with high monomer conversion and polymerization rates. The resulting diblock copolymer NPs were analyzed by dynamic light scattering (DLS) and cryogenic-transmission electron microscopy (cryo-TEM). cryo-TEM studies reveal the presence of only NPs with spherical morphology such as micelles and polymer vesicles known as polymersomes. Under the selected conditions, we were able to fine-tune the morphology from micelles to polymersomes, which may attract considerable attention in the drug-delivery field. The capability for drug encapsulation using the obtained in situ pH-responsive NPs, the polymersomes based on PHPMA23-b-PDPA100, and the micelles based on PHPMA51-b-PDPA100 was demonstrated using the hydrophobic agent and fluorescent dye as Nile red (NR). In addition, the NP disassembly in slightly acidic environments enables fast NR release.
Collapse
|
13
|
Penfold NJW, Neal TJ, Plait C, Leigh AE, Chimonides G, Smallridge MJ, Armes SP. Reverse sequence polymerization-induced self-assembly in aqueous media: a counter-intuitive approach to sterically-stabilized diblock copolymer nano-objects. Polym Chem 2022. [DOI: 10.1039/d2py01064j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A 500 nm charge-stabilized latex is converted into 40 nm sterically-stabilized nanoparticles via reverse sequence polymerization-induced self-assembly (PISA).
Collapse
Affiliation(s)
- Nicholas J. W. Penfold
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Thomas J. Neal
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Corentin Plait
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Andrew E. Leigh
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | - Gwen Chimonides
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| | | | - Steven P. Armes
- Dainton Building, Department of Chemistry, The University of Sheffield, Brook Hill, Sheffield, South Yorkshire, S3 7HF, UK
| |
Collapse
|