1
|
Alnajjar MA, Hennig A. Fluorescence Turn-ON Displacement Assays with Cucurbit[7]uril-Thiophenylpyridinium Complexes as Host-Dye Reporter Pairs. Org Lett 2024; 26:9126-9131. [PMID: 39401389 DOI: 10.1021/acs.orglett.4c03469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
The N-methyl-4-thiophenylpyridinium cation (ThioPy) is a high affinity (Kd ca. 5 nM), fast-exchanging fluorescent probe for cucurbit[7]uril (CB7). The CB7/ThioPy complex shows a unique fluorescence turn-ON response upon displacement by an analyte in sensing application. This enabled the development of a real-time fluorescence assay with the MRFA peptide for the protease thermolysin, which is also suitable for the cancer biomarker cathepsin B. Moreover, liposome encapsulation of CB7/ThioPy in large unilamellar vesicles (LUVs) provided mechanistic insight into intravesicular dye displacement reactions.
Collapse
Affiliation(s)
- Mohammad A Alnajjar
- Center for Cellular Nanoanalytics (CellNanOs) and Department of Biology and Chemistry, Universität Osnabrück, Barbarastraße 7, 49069 Osnabrück, Germany
| | - Andreas Hennig
- Center for Cellular Nanoanalytics (CellNanOs) and Department of Biology and Chemistry, Universität Osnabrück, Barbarastraße 7, 49069 Osnabrück, Germany
| |
Collapse
|
2
|
Li Q, Yu Z, Redshaw C, Xiao X, Tao Z. Double-cavity cucurbiturils: synthesis, structures, properties, and applications. Chem Soc Rev 2024; 53:3536-3560. [PMID: 38414424 DOI: 10.1039/d3cs00961k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Double-cavity Q[n]s are relatively new members of the Q[n] family and have garnered significant interest due to their distinctive structures and novel properties. While they incorporate n glycoluril units, akin to their single-cavity counterparts, their geometry can best be described as resembling a figure-of-eight or a handcuff, distinguishing them from single-cavity Q[n]s. Despite retaining the core molecular recognition traits of single-cavity Q[n]s, these double-cavity variants introduce fascinating new attributes rooted in their distinct configurations. This overview delves into the synthesis, structural attributes, properties, and intriguing applications of double-cavity Q[n]s. Some of the applications explored include their role in supramolecular polymers, molecular machinery, supra-amphiphiles, sensors, artificial light-harvesting systems, and adsorptive separation materials. Upon concluding this review, we discuss potential challenges and avenues for future development and offer valuable insights for other scholars working in this area with the aim of stimulating further exploration and interest.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, P. R. China.
| | - Zhengwei Yu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, P. R. China.
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Hull HU6 7RX, UK
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, P. R. China.
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, P. R. China.
| |
Collapse
|
3
|
Yin H, Rosas R, Viel S, Giorgi M, Monnier V, Charles L, Siri D, Gigmes D, Nassar Y, Chevallier F, Bucher C, Wang R, Kermagoret A, Bardelang D. Internal Dynamics and Modular Peripheral Binding in Stimuli-Responsive 3 : 2 Host:Guest Complexes. Angew Chem Int Ed Engl 2024; 63:e202315985. [PMID: 38009627 DOI: 10.1002/anie.202315985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
Now that the chemistry of 1 : 1 host:guest complexes is well-established, it is surprising to note that higher stoichiometry (oligomeric) complexes, especially those with excess host, remain largely unexplored. Yet, proteins tend to oligomerize, affording new functions for cell machinery. Here, we show that cucurbit[n]uril (CB[n]) macrocycles combined with symmetric, linear di-viologens form unusual 3 : 2 host:guest complexes exhibiting remarkable dynamic properties, host self-sorting, and external ring-translocation. These results highlight the structural tunability of cucurbit[8]uril (CB[8]) based 3 : 2 host:guest complexes in water and their responsiveness toward several stimuli (chemicals, pH, redox).
Collapse
Affiliation(s)
- Hang Yin
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | - Roselyne Rosas
- Aix Marseille Univ, CNRS, Centrale Marseille, FSCM, Spectropole, Marseille, France
| | - Stéphane Viel
- Aix Marseille Univ, CNRS, ICR, AMUtech, Marseille, France
- Institut Universitaire de France, 75005, Paris, France
| | - Michel Giorgi
- Aix Marseille Univ, CNRS, Centrale Marseille, FSCM, Spectropole, Marseille, France
| | - Valerie Monnier
- Aix Marseille Univ, CNRS, Centrale Marseille, FSCM, Spectropole, Marseille, France
| | | | - Didier Siri
- Aix Marseille Univ, CNRS, ICR, AMUtech, Marseille, France
| | - Didier Gigmes
- Aix Marseille Univ, CNRS, ICR, AMUtech, Marseille, France
| | - Youssef Nassar
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Laboratoire de Chimie, 69342, Lyon, France
| | - Floris Chevallier
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Laboratoire de Chimie, 69342, Lyon, France
| | - Christophe Bucher
- Univ Lyon, Ens de Lyon, CNRS UMR 5182, Laboratoire de Chimie, 69342, Lyon, France
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau, China
| | | | | |
Collapse
|
4
|
Jiang R, Nilam M, Hennig A, Nau WM. Dual-Color Real-Time Chemosensing of a Compartmentalized Reaction Network Involving Enzyme-Induced Membrane Permeation of Peptides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306922. [PMID: 37703578 DOI: 10.1002/adma.202306922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/04/2023] [Indexed: 09/15/2023]
Abstract
The design of synthetic systems with interrelated reaction sequences that model incipient biological complexity is limited by physicochemical tools that allow the direct monitoring of the individual processes in real-time. To mimic a simple digestion-resorption sequence, the authors have designed compartmentalized liposomal systems that incorporate extra- and intravesicular chemosensing ensembles. The extravesicular reporter pair consists of cucurbit[7]uril and methylene blue to monitor the enzymatic cleavage of short enkephalin-related peptides by thermolysin through a switch-off fluorescence response ("digestion"). Because the substrate is membrane-impermeable, but the dipeptide product is permeable, uptake of the latter into the pre-formed liposomes occurs as a follow-up process. The intravesicular chemosensing ensemble consists of i) cucurbit[8]uril, 2-anilinonaphthalene-6-sulfonic acid, and methyl viologen or ii) cucurbit[7]uril and berberine to monitor the uptake ("resorption") of the enzymatic products through the liposomal membranes by i) a switch-on or ii) a switch-off fluorescence response. The dyes are designed to allow selective optical excitation and read-out of the extra- and intravesicular dyes, which allow for dual-color chemosensing and, therefore, kinetic discrimination of the two sequential reactions.
Collapse
Affiliation(s)
- Ruixue Jiang
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Mohamed Nilam
- Center for Cellular Nanoanalytics (CellNanOs), Department of Biology and Chemistry, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany
| | - Andreas Hennig
- Center for Cellular Nanoanalytics (CellNanOs), Department of Biology and Chemistry, Universität Osnabrück, Barbarastraße 7, 49069, Osnabrück, Germany
| | - Werner M Nau
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| |
Collapse
|
5
|
Yin H, Cheng Q, Bardelang D, Wang R. Challenges and Opportunities of Functionalized Cucurbiturils for Biomedical Applications. JACS AU 2023; 3:2356-2377. [PMID: 37772183 PMCID: PMC10523374 DOI: 10.1021/jacsau.3c00273] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 09/30/2023]
Abstract
Cucurbit[n]uril (CB[n]) macrocycles (especially CB[5] to CB[8]) have shown exceptional attributes since their discovery in 2000. Their stability, water solubility, responsiveness to several stimuli, and remarkable binding properties have enabled a growing number of biological applications. Yet, soon after their discovery, the challenge of their functionalization was set. Nevertheless, after more than two decades, a myriad of CB[n] derivatives has been described, many of them used in cells or in vivo for advanced applications. This perspective summarizes key advances of this burgeoning field and points to the next opportunities and remaining challenges to fully express the potential of these fascinating macrocycles in biology and biomedical sciences.
Collapse
Affiliation(s)
- Hang Yin
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University
of Macau, Taipa, Macau 999078, China
| | - Qian Cheng
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University
of Macau, Taipa, Macau 999078, China
| | | | - Ruibing Wang
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University
of Macau, Taipa, Macau 999078, China
| |
Collapse
|
6
|
Pourtalebi Jahromi L, Rothammer M, Fuhrmann G. Polysaccharide hydrogel platforms as suitable carriers of liposomes and extracellular vesicles for dermal applications. Adv Drug Deliv Rev 2023; 200:115028. [PMID: 37517778 DOI: 10.1016/j.addr.2023.115028] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 06/26/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Lipid-based nanocarriers have been extensively investigated for their application in drug delivery. Particularly, liposomes are now clinically established for treating various diseases such as fungal infections. In contrast, extracellular vesicles (EVs) - small cell-derived nanoparticles involved in cellular communication - have just recently sparked interest as drug carriers but their development is still at the preclinical level. To drive this development further, the methods and technologies exploited in the context of liposome research should be applied in the domain of EVs to facilitate and accelerate their clinical translation. One of the crucial steps for EV-based therapeutics is designing them as proper dosage forms for specific applications. This review offers a comprehensive overview of state-of-the-art polysaccharide-based hydrogel platforms designed for artificial and natural vesicles with application in drug delivery to the skin. We discuss their various physicochemical and biological properties and try to create a sound basis for the optimization of EV-embedded hydrogels as versatile therapeutic avenues.
Collapse
Affiliation(s)
- Leila Pourtalebi Jahromi
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany
| | - Markus Rothammer
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany
| | - Gregor Fuhrmann
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Pharmaceutical Biology, Staudtstr. 5, 91058 Erlangen, Germany; FAU NeW, Nikolaus-Fiebiger-Str. 10, 91058 Erlangen, Germany.
| |
Collapse
|