1
|
Zhang Y, Sheong FK, Lin Z. Natural Fragment Bond Orbital Method for Interfragment Bonding Interaction Analysis. J Am Chem Soc 2024; 146:34591-34599. [PMID: 39655899 DOI: 10.1021/jacs.4c12421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
A complex chemical system is often examined based on their fragments, so fragment-based analysis is the key to chemical understanding. We report the natural fragment bond orbital (NFBO) method for interfragment bonding interaction analysis, as an extension to the well-known natural bond orbital method. NFBOs together with their corresponding natural fragment hybrid orbitals (NFHOs) allow us to derive local bonding and antibonding orbitals among fragments from the delocalized canonical molecular orbitals. In this paper, we provide the algorithm for finding NFBOs and showcase its application to several chemically interesting systems featuring significant interfragment bonding interactions. Through these examples, the NFBO method is shown to be a powerful tool with which to analyze the electronic structures of molecules possessing strong interfragment bonding interactions.
Collapse
Affiliation(s)
- Yichi Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Fu Kit Sheong
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Zhenyang Lin
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| |
Collapse
|
2
|
Fernández-Rodríguez MJ, Jones PG, Vicente J, Martínez-Viviente E. Synthesis and Reactivity of Dipalladated Derivatives of Terephthalaldehyde. Organometallics 2024; 43:1647-1657. [PMID: 39148863 PMCID: PMC11323953 DOI: 10.1021/acs.organomet.4c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/17/2024]
Abstract
The polynuclear complex [{μ-C1,C4,N,N″-C6H2{C(H)=N(nBu)}2-2,5}{Pd(μ-OAc)}]2 (I) reacts with tbbpy (4,4'-di-tert-butyl-2,2'-bipyridine) and TlOTf to form the dinuclear complex [{μ-C1,C4,N,N″-C6H2{C(H)=N(nBu)}2-2,5}{Pd(tbbpy)}2] (1). The hydrolysis of I with acetic acid in a 5:1 acetone/water mixture, in the presence of two equivalents of tbbpy and excess NaX (X = Br, I), yields the dipalladated terephthalaldehyde complexes [C6H2{PdX(tbbpy)}2-1,4-(CHO)2-2,5] [X = Br (2a), X = I (2b)], which are the first fully characterized complexes of this type. The reaction of 2a,b with CO results in the insertion of CO into both aryl-Pd bonds, forming [C6H2{C(O){PdX(tbbpy)}}2-1,4-(CHO)2-2,5] [X = Br (3a), X = I (3b)], which are the first examples of complexes with CO inserted into two separate aryl-metal bonds involving the same ligand. The bromo complex 2a reacts with excess XylNC in acetone, causing the precipitation of the dinuclear complex 2,3,6,7-tetrahydrobenzo[1,2-c:4,5-c']dipyrrole-1,5-dione-2,6-dixylyl-3,7-bis{=C(NHXyl)-C(=NXyl)-[PdBr(CNXyl)2]} (4), which is the result of the insertion of three molecules of the isocyanide into each aryl-Pd bond and the nucleophilic attack of one of them at each formyl group. When complex 4 reacts with TlOTf and residual water in 1,2-dichloroethane at 70 °C, depalladation occurs, and the organic compound 2,3,6,7-tetrahydrobenzo[1,2-c:4,5-c']dipyrrole-1,5-dione-2,6-dixylyl-3,7-bis{=C(NHXyl)-C(O)NHXyl} (5) can be isolated. The crystal structures of 1·4CHCl3, 4·2CH2Cl2·3hexane, and 5·2CDCl3 have been determined by X-ray crystallography.
Collapse
Affiliation(s)
- María-José Fernández-Rodríguez
- Grupo
de Química Organometálica, Departamento de Química
Inorgánica, Facultad de Química, Universidad de Murcia, Murcia E-30071, Spain
| | - Peter G. Jones
- Institut
für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, Braunschweig 38106, Germany
| | - José Vicente
- Grupo
de Química Organometálica, Departamento de Química
Inorgánica, Facultad de Química, Universidad de Murcia, Murcia E-30071, Spain
| | - Eloísa Martínez-Viviente
- Grupo
de Química Organometálica, Departamento de Química
Inorgánica, Facultad de Química, Universidad de Murcia, Murcia E-30071, Spain
| |
Collapse
|
3
|
Aguirre LS, Litwiller LT, Lugo AN, Thomas AA. Design and Synthesis of Dialkylarylphosphine Urea Ligands and their Application in Palladium-Catalyzed Cross-Coupling Reactions. Helv Chim Acta 2024; 107:e202300244. [PMID: 39717368 PMCID: PMC11666254 DOI: 10.1002/hlca.202300244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/09/2024] [Indexed: 12/25/2024]
Abstract
We describe herein the design and synthesis of a new class of dialkylarylphosphine ligands incorporating a Lewis-basic urea subunit. The ligand synthesis consisted of six linear steps and was enabled by the discovery of a new N-to-N alkyl migration reaction. This new series of dialkylarylphosphine urea ligands were applied in common palladium-catalyzed cross-coupling reactions for the formation of carbon-carbon and carbon-nitrogen bonds in moderate to high yields.
Collapse
Affiliation(s)
- Lupita S Aguirre
- Department of Chemistry, Texas A&M University, PO Box 30012, College Station, TX 77842-30012, United States
| | - Levi T Litwiller
- Department of Chemistry, Texas A&M University, PO Box 30012, College Station, TX 77842-30012, United States
| | - Alexis N Lugo
- Department of Chemistry, Texas A&M University, PO Box 30012, College Station, TX 77842-30012, United States
| | - Andy A Thomas
- Department of Chemistry, Texas A&M University, PO Box 30012, College Station, TX 77842-30012, United States
| |
Collapse
|
4
|
Chakrabarti K, Wade Wolfe MM, Guo S, Tucker JW, Lee J, Szymczak NK. A metal-free strategy to construct fluoroalkyl-olefin linkages using fluoroalkanes. Chem Sci 2024; 15:1752-1757. [PMID: 38303957 PMCID: PMC10829021 DOI: 10.1039/d3sc05616c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/21/2023] [Indexed: 02/03/2024] Open
Abstract
We present a metal-free strategy to access fluoroalkyl-olefin linkages from fluoroalkane precursors and vinyl-pinacol boronic ester (BPin) reagents. This reaction sequence is templated by the boron reagent, which induces C-C bond formation upon oxidation. We developed this strategy into a one-pot synthetic protocol using RCF2H precursors directly with vinyl-BPin reagents in the presence of a Brønsted base, which tolerated oxygen- and nitrogen-containing heterocycles, and aryl halogens. We also found that HCF3 (HCF-23; a byproduct of the Teflon industry) and CH2F2 (HCF-32; a low-cost refrigerant) are amenable to this protocol, representing distinct strategies to generate RCF2H and RCF3 molecules. Finally, we demonstrate that the vinyldifluoromethylene products can be readily derivatized, representing an avenue for late-stage modification after installing the fluoroalkyl unit.
Collapse
Affiliation(s)
- Kaushik Chakrabarti
- Department of Chemistry, University of Michigan, 930 N. University Ann Arbor Michigan 48109 USA
| | - Michael M Wade Wolfe
- Department of Chemistry, University of Michigan, 930 N. University Ann Arbor Michigan 48109 USA
| | - Shuo Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P.R. China
| | - Joseph W Tucker
- Medicine Design, Pfizer Inc. Eastern Point Rd Groton CT 06340 USA
| | - Jisun Lee
- Medicine Design, Pfizer Inc. Eastern Point Rd Groton CT 06340 USA
| | - Nathaniel K Szymczak
- Department of Chemistry, University of Michigan, 930 N. University Ann Arbor Michigan 48109 USA
| |
Collapse
|
5
|
Dong X, Liu X, Wang L, Zhang Y, Li J, Tian L, Zhao Y. Catalyst-Free gem-Difluorination/Spirocyclization of Indole-2-carboxamides: Synthesis of C2-Spiroindoline Derivatives. Org Lett 2023. [PMID: 38014899 DOI: 10.1021/acs.orglett.3c03906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
A catalyst-free gem-difluorination/spirocyclization reaction has been successfully developed for the synthesis of gem-difluorinated C2-spiroindoline derivatives from indole-2-carboxamides. The resulting gem-difluorinated C2-spiroindolines can be easily converted into 2-spiropseudoindoxyls through hydrolysis. This method offers the benefits of simple operation, convenient access to raw materials, and mild conditions. Dual function of Selectfluor in this reaction is noteworthy as it can serve as both a fluorinating agent and an alkaline accelerator precursor.
Collapse
Affiliation(s)
- Xiaotong Dong
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Universities of Shandong Province, Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, Shandong Province 273165, P. R. China
| | - Xiaonuo Liu
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Universities of Shandong Province, Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, Shandong Province 273165, P. R. China
| | - Lei Wang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Universities of Shandong Province, Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, Shandong Province 273165, P. R. China
| | - Yixuan Zhang
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Universities of Shandong Province, Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, Shandong Province 273165, P. R. China
| | - Jiale Li
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Universities of Shandong Province, Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, Shandong Province 273165, P. R. China
| | - Laijin Tian
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Universities of Shandong Province, Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, Shandong Province 273165, P. R. China
| | - Yulei Zhao
- Key Laboratory of Life-Organic Analysis of Shandong Province, Key Laboratory of Green Natural Products and Pharmaceutical Intermediates in Universities of Shandong Province, Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu City, Shandong Province 273165, P. R. China
| |
Collapse
|
6
|
Bunnell A, Lalloo N, Brigham C, Sanford MS. Palladium-Catalyzed Decarbonylative Coupling of (Hetero)Aryl Boronate Esters with Difluorobenzyl Glutarimides. Org Lett 2023; 25:7584-7588. [PMID: 37811852 PMCID: PMC10629228 DOI: 10.1021/acs.orglett.3c03071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
This report describes the Pd-catalyzed decarbonylative coupling of difluorobenzyl glutarimides with (hetero)aryl boronate esters to yield difluorobenzyl-substituted (hetero)arene products. The use of PAd2Bu as the phosphine ligand in combination with neopentylboronate ester nucleophiles proved critical for the selective formation of the decarbonylative coupling product versus analogous difluorobenzyl ketone. This transformation is effective for electronically diverse (hetero)aryl boronate esters and substituted difluorobenzyl glutarimides.
Collapse
Affiliation(s)
- Alexander Bunnell
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Naish Lalloo
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Conor Brigham
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Melanie S Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
7
|
Li Z, Li Z, Peng G, Shi C, Wang H, Ding SY, Wang Q, Liu Z, Jin Z. PF 6 - Pseudohalides Anion Based Metal-Free Perovskite Single Crystal for Stable X-Ray Detector to Attain Record Sensitivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2300480. [PMID: 36971461 DOI: 10.1002/adma.202300480] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Metal-free perovskites (MFPs) possess excellent photophysical properties of perovskites while avoiding the introduction of toxic metal ions and organic solvents, and have been expanded to X-ray detection. However, iodine-based high-performance MFPs are tended to oxidation, corrosion, and uncontrolled ion migration, resulting in poor material stability and device performance. Herein, the strongly electronegative PF6 - pseudohalide is used to fabricate the large-size MDABCO-NH4 (PF6 )3 (MDBACO = methyl-N'-diazabicyclo[2.2.2]octonium) single crystals (SCs) for solving the problems of iodine ions. After the introduction of PF6 - pseudohalides, the Coulomb interaction and hydrogen bonding strength are enhanced to alleviate the ion-migration and stability problems. Moreover, combined with theoretical calculations, PF6 - pseudohalides increase the ion-migration barrier, and affect the contribution of its components to the energy band for a broadening bandgap. Meanwhile, the improved physical properties, such as large activation energy of ionic migration, high resistivity, and low current drift, further expand its application in low-dose and sensitive X-ray detection. Finally, the X-ray detector based on MDABCO-NH4 (PF6 )3 SCs achieves a sensitivity of 2078 µC Gyair -1 cm-2 (highest among metal-free SCs-based detectors) and the lowest detectable dose rate (16.3 nGyair s-1 ). This work has expanded the selection of MFPs for X-ray detectors and somewhat advanced the development of high-performance devices.
Collapse
Affiliation(s)
- Zhizai Li
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - ZhenHua Li
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - Guoqiang Peng
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - Chang Shi
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - Haoxu Wang
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - San-Yuan Ding
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Qian Wang
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| | - Zitong Liu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Zhiwen Jin
- School of Physical Science and Technology & Lanzhou Center for Theoretical Physics & Key Laboratory of Theoretical Physics of Gansu Province, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
8
|
Wade Wolfe MM, Guo S, Yu LS, Vogel TR, Tucker JW, Szymczak NK. Nucleophilic strategies to construct –CF 2– linkages using borazine-CF 2Ar reagents. Chem Commun (Camb) 2022; 58:11705-11708. [DOI: 10.1039/d2cc01938h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using nucleophilic, boron-based –CF2Ar reagents, we demonstrate three methods to form C–CF bonds: (1) nucleophilic aromatic substitution, (2) palladium catalyzed cross-coupling, and (3) nucleophilic substitution.
Collapse
Affiliation(s)
| | - Shuo Guo
- University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109, USA
| | - Lucy S. Yu
- University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109, USA
| | - Trenton R. Vogel
- University of Michigan, 930 N. University Ave., Ann Arbor, MI, 48109, USA
| | - Joseph W. Tucker
- Medicine Design, Pfizer Inc., Eastern Point Rd., Groton, CT, 06340, USA
| | | |
Collapse
|