1
|
Huang R, Gao M, Yang Z, Han W, Wei Z, Li Z, Xu B. 1,3-Difunctionalization of Donor-Acceptor Cyclopropanes Enabled by Copper Nitrate: A Direct Approach to γ-Halonitrates. Org Lett 2024. [PMID: 39481081 DOI: 10.1021/acs.orglett.4c03370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
1,3-Difunctionalization of donor-acceptor cyclopropanes with copper nitrate and N-halosuccinimide was developed to efficiently afford γ-halonitrates. The pivotal factor of this protocol lies in the dual role of copper nitrate as a Lewis acid and an ideal nitrooxy source. The given approach features easy handling, good functional group compatibility, and wide substrate scope. Furthermore, various transformations of the obtained γ-chloronitrates underscore the remarkable synthetic potential inherent in this method.
Collapse
Affiliation(s)
- Ruoxin Huang
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
| | - Mingchun Gao
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
| | - Zhenkun Yang
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
| | - Wanghao Han
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
| | - Ziqiang Wei
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
| | - Zhen Li
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
| | - Bin Xu
- Department of Chemistry, Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), Shanghai Engineering Research Center of Organ Repair, Innovative Drug Research Center, School of Medicine, Shanghai University, Shanghai 200444, People's Republic of China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
- Joint International Research Laboratory of Biomaterials and Biotechnology in Organ Repair (Ministry of Education), Shanghai University, Shanghai 200444, People's Republic of China
| |
Collapse
|
2
|
Jeny SR, Selvi S, Deerkadharshini M, Srinivasan K. Synthesis of β-enamino malonates through caesium carbonate-promoted reaction of nitro-substituted donor-acceptor cyclopropanes. RSC Adv 2024; 14:33587-33591. [PMID: 39439834 PMCID: PMC11495472 DOI: 10.1039/d4ra05619a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024] Open
Abstract
A caesium carbonate-promoted reaction of nitro-substituted donor-acceptor cyclopropanes (DACs) with primary aromatic amines in water provides a convenient access to β-enamino malonates under mild reaction conditions. The transformation takes place through the formation of allene intermediates from the DACs followed by the conjugate addition of various primary aromatic amines to the intermediates. The reaction proceeds more efficiently in water as compared with organic solvents and the products were isolated in good yields by filtering through a silica gel column without any prior extraction procedure.
Collapse
Affiliation(s)
- Sebastin Raj Jeny
- School of Chemistry, Bharathidasan University Tiruchirappalli-620024 Tamil Nadu India +91-431-2407053
| | - Subramani Selvi
- School of Chemistry, Bharathidasan University Tiruchirappalli-620024 Tamil Nadu India +91-431-2407053
| | - Murugaiya Deerkadharshini
- School of Chemistry, Bharathidasan University Tiruchirappalli-620024 Tamil Nadu India +91-431-2407053
| | - Kannupal Srinivasan
- School of Chemistry, Bharathidasan University Tiruchirappalli-620024 Tamil Nadu India +91-431-2407053
| |
Collapse
|
3
|
Devaraj T, Srinivasan K. Ytterbium Triflate-Catalyzed Intramolecular Arylative Ring Opening of Arylaminomethyl-Substituted Donor-Acceptor Cyclopropanes: Access to Tetrahydroquinolines. J Org Chem 2024; 89:13886-13893. [PMID: 39303150 DOI: 10.1021/acs.joc.4c00924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
The treatment of arylaminomethyl-substituted donor-acceptor cyclopropanes with a catalytic amount of Yb(OTf)3 provides expedient access to tetrahydroquinoline derivatives. The transformation proceeds through an intramolecular SN2-type attack of the aminomethyl-containing aryl ring on the cyclopropane ring, leading to the formation of the products as single diastereomers.
Collapse
Affiliation(s)
- Thangaraj Devaraj
- School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| | - Kannupal Srinivasan
- School of Chemistry, Bharathidasan University, Tiruchirappalli 620024, Tamil Nadu, India
| |
Collapse
|
4
|
Britto KJ, Meenakshi M, Srinivasan K. Synthesis of 1-aryl-2,3-diaroyl cyclopropanes from 1,3,5-triaryl-1,5-diketones and their transformation into E, E-1,4-diaryl-1,3-butadienes. RSC Adv 2024; 14:22076-22085. [PMID: 39005250 PMCID: PMC11240216 DOI: 10.1039/d4ra02525c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 07/06/2024] [Indexed: 07/16/2024] Open
Abstract
A new method for the synthesis of 1-aryl-2,3-diaroyl cyclopropanes has been developed by iodine/DBU-mediated cyclization of 1,3,5-triaryl-1,5-diketones. The alcohols derived by the reduction of these cyclopropanes, when treated with conc. HCl, afforded a series of 1,3-dienes through cyclopropyl ring-opening and subsequent fragmentation. Overall, the synthetic sequence represents a new non-Wittig methodology for the synthesis of 1,3-dienes from 1,5-diketones.
Collapse
Affiliation(s)
- Kashpar John Britto
- School of Chemistry, Bharathidasan University Tiruchirappalli 620024 Tamil Nadu India +91-431-2407053
| | - Maniarasu Meenakshi
- School of Chemistry, Bharathidasan University Tiruchirappalli 620024 Tamil Nadu India +91-431-2407053
| | - Kannupal Srinivasan
- School of Chemistry, Bharathidasan University Tiruchirappalli 620024 Tamil Nadu India +91-431-2407053
| |
Collapse
|
5
|
Daniel FL, Srinivasan K. Intramolecular 1,2-Aroyl Migration in Spiro Donor-Acceptor Cyclopropanes: Formation of 1,4-Naphthoquinones and 1-Naphthols as Ring-Expansion Products. J Org Chem 2024; 89:5304-5313. [PMID: 38593430 DOI: 10.1021/acs.joc.3c02671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Most of the known rearrangement reactions of donor-acceptor cyclopropanes (DACs) involve the migration of cationic carbon atom to anionic carbon or heteroatoms in 1,3- or 1,4-positions. In the present work, we observed that spiro DACs based on 1,3-indanedione or 1-indanone moiety undergo intramolecular 1,2-aroyl migration when treated with titanium(IV) chloride to afford 1,4-naphthoquinones and α-naphthols readily. The reactions take place through the formation of putative 1,3-dipolar intermediates, followed by cleavage and migration of the aroyl group to the adjacent carbon to afford the ring-expansion products.
Collapse
Affiliation(s)
- Franklin Leslin Daniel
- School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| | - Kannupal Srinivasan
- School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| |
Collapse
|
6
|
Hu L, Xiang Y, Lan XB, Xie Y. An Intermolecular Hydroarylation of Unactivated Arylcyclopropane via Re 2O 7/HFIP-Mediated Ring Opening. Org Lett 2024; 26:2085-2090. [PMID: 38441049 DOI: 10.1021/acs.orglett.4c00272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
In this paper, we describe a Re2O7-mediated ring-opening arylation of unactivated arylcyclopropane because of its functionalization with various arenes via Friedel-Crafts-type reactivity. This protocol allows facile access to functionalized 1,1-diaryl alkanes and is characterized by a broad substrate scope, mild reaction conditions, high efficiency, and high atom economy. Both density functional theory calculations and deuterium labeling experiments were carried out to justify the indispensable role of HFIP in this transformation and pointed to Re2O7-mediated ring opening being the rate-determining step.
Collapse
Affiliation(s)
- Liqun Hu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Yao Xiang
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| | - Xiao-Bing Lan
- Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, School of Chemistry and Environmental Science, Xiangnan University, Chenzhou 423000, China
| | - Youwei Xie
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Materials Chemistry and Service Failure, and School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China
| |
Collapse
|
7
|
Mishra M, Verma K, Banerjee S, Punniyamurthy T. Iron-catalyzed cascade C-C/C-O bond formation of 2,4-dienals with donor-acceptor cyclopropanes: access to functionalized hexahydrocyclopentapyrans. Chem Commun (Camb) 2024; 60:2788-2791. [PMID: 38362602 DOI: 10.1039/d3cc06261a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Iron-catalyzed cascade C-C and C-O bond formation of 2,4-dienals with donor-acceptor cyclopropanes (DACs) has been developed to furnish hexahydrocyclopentapyrans. Optically active DACs can be coupled stereospecifically (>97% ee). Chirality transfer, use of iron-catalysis and substrate scope are the salient practical features.
Collapse
Affiliation(s)
- Manmath Mishra
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Kshitiz Verma
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | - Sonbidya Banerjee
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.
| | | |
Collapse
|
8
|
Harikumar S, Kandy LTK, Guin A, Biju AT. Lewis acid-catalyzed one-pot thioalkenylation of donor-acceptor cyclopropanes using in situ generated dithiocarbamates and propiolates. Org Biomol Chem 2024; 22:1834-1838. [PMID: 38334700 DOI: 10.1039/d4ob00053f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Lewis acid-catalyzed one-pot 1,3-thioalkenylation of donor-acceptor (D-A) cyclopropanes has been demonstrated employing in situ generated dithiocarbamates (from amines and CS2) as nucleophilic triggers and alkyl propiolates as electrophiles. This method addresses the limitations of previously known carbothiolation approach, eliminating the need for extra filtration prior to the subsequent trapping with electrophiles. The anticipated thioalkenylated products were obtained in good to excellent yields with a moderate to good E/Z ratio. Three new bonds (C-N, C-S, and C-C) are formed during this 1,3-bisfunctionalization reaction. Notably, employing enantiomerically pure D-A cyclopropanes resulted in enantiopure 1,3-thioalkenylated products, underscoring the stereospecific nature of the developed reaction.
Collapse
Affiliation(s)
- Sanjeevni Harikumar
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | | | - Avishek Guin
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| | - Akkattu T Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
9
|
Guo H, Ruan X, Xu Z, Wang K, Li X, Jiang J. Visible-Light-Mediated Dual Functionalization of Allenes: Regio- and Stereoselective Synthesis of Vinylsulfone Azides. J Org Chem 2024; 89:665-675. [PMID: 38117975 DOI: 10.1021/acs.joc.3c02515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
A gentle and effective method for the photocatalytic dual functionalization of allenes with high regio- and stereoselectivity using a nonmetallic catalyst is described. Inexpensive and easily available sulfinates and TMSN3 were employed as sulfone and azido sources, respectively. The method is characterized by satisfactory substrate compatibility and tolerance toward functional groups. The straightforward initial mechanistic experiments suggested that the reaction could follow a radical pathway. The synthesis of vinylsulfone azide derivatives presented here offers a promising scaffold for the future development of vinyl sulfone-based drugs and functional bioorthogonal reagents.
Collapse
Affiliation(s)
- Houqi Guo
- College of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, People's Republic of China
| | - Xin Ruan
- College of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, People's Republic of China
| | - Zekun Xu
- College of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, People's Republic of China
| | - Kai Wang
- College of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, People's Republic of China
- Hubei Jiangxia Laboratory, Wuhan 430299, Hubei, People's Republic of China
| | - Xiang Li
- College of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, People's Republic of China
| | - Jun Jiang
- College of Health Science and Engineering, Hubei University, Wuhan 430062, Hubei, People's Republic of China
- Hubei Jiangxia Laboratory, Wuhan 430299, Hubei, People's Republic of China
| |
Collapse
|
10
|
Jiang Y, Ma HJ, Wang XL, Yang Y. Yb(OTf) 3-Catalyzed Formal (4 + 3) Cycloaddition Reactions of 3-Benzylideneindoline-2-thiones with Donor-Acceptor Cyclopropanes. J Org Chem 2023; 88:14587-14600. [PMID: 37819164 DOI: 10.1021/acs.joc.3c01609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
A Yb(OTf)3-catalyzed formal (4 + 3) cycloaddition reaction of donor-acceptor cyclopropanes with 3-benzylideneindoline-2-thiones as sulfur-containing 4π components has been successfully achieved. A series of functionalized 5,10-dihydro-2H-thiepino[2,3-b]indole derivatives were synthesized with good yields and moderate to good diastereoselectivity. The reaction described herein represented the inaugural (4 + 3) cycloaddition of 3-benzylideneindoline-2-thiones.
Collapse
Affiliation(s)
- Yan Jiang
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Hao-Jie Ma
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Xue-Long Wang
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Yi Yang
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| |
Collapse
|
11
|
Thangamalar S, Srinivasan K. Tandem Dearomative/Rearomative (3 + 2) Annulation of Aroyl-Substituted Donor-Acceptor Cyclopropanes with Benzothiazoles. J Org Chem 2023; 88:3903-3908. [PMID: 36877197 DOI: 10.1021/acs.joc.2c02768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
A series of benzo[d]pyrrolo[2,1-b]thiazoles was synthesized by (3 + 2) annulation of aroyl-substituted donor-acceptor cyclopropanes with benzothiazoles. The annulation, promoted by a substoichiometric amount of Sc(OTf)3, takes place through the formation of the respective dearomatized (3 + 2) adducts, followed by unexpected decarbethoxylative and dehydrogenative rearomatization to afford fully aromatized products. The unusual reactivity is attributed to the presence of an extra aroyl group in the donor-acceptor cyclopropanes.
Collapse
Affiliation(s)
| | - Kannupal Srinivasan
- School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India
| |
Collapse
|
12
|
Zhang D, Chen L, Deng H, Zhang Y, Cheng Q, Zhang QF. Asymmetric ring-opening reactions of donor-acceptor cyclopropanes with 1,3-cyclodiones. RSC Adv 2023; 13:7432-7435. [PMID: 36895764 PMCID: PMC9990749 DOI: 10.1039/d2ra08257h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 02/24/2023] [Indexed: 03/09/2023] Open
Abstract
Asymmetric ring-opening reactions of donor-acceptor cyclopropanes with 1,3-cyclodiones have been established for the synthesis of enantioenriched γ-hydroxybutyric acid derivatives in the presence of Cu(ii)/trisoxazoline catalyst. These reactions offered the desired products in 70% to 93% yields with 79% to 99% enantiomeric excesses.
Collapse
Affiliation(s)
- Dongxin Zhang
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology No. 59 Hudong Road Ma'anshan 243002 China
| | - Lvjia Chen
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology No. 59 Hudong Road Ma'anshan 243002 China
| | - Huiqing Deng
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology No. 59 Hudong Road Ma'anshan 243002 China
| | - Ying Zhang
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology No. 59 Hudong Road Ma'anshan 243002 China
| | - Qihang Cheng
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology No. 59 Hudong Road Ma'anshan 243002 China
| | - Qian-Feng Zhang
- Institute of Molecular Engineering and Applied Chemistry, Anhui University of Technology No. 59 Hudong Road Ma'anshan 243002 China
| |
Collapse
|
13
|
Ahlburg NL, Hergert O, Jones PG, Werz DB. Donor-Acceptor Cyclopropanes: Activation Enabled by a Single, Vinylogous Acceptor. Angew Chem Int Ed Engl 2023; 62:e202214390. [PMID: 36322458 PMCID: PMC10099577 DOI: 10.1002/anie.202214390] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Indexed: 11/05/2022]
Abstract
A novel class of highly activated donor-acceptor cyclopropanes bearing only a single, vinylogous acceptor is presented. These strained moieties readily undergo cycloadditions with aldehydes, ketones, thioketones, nitriles, naphth-2-ols and various other substrates to yield the corresponding carbo- and heterocycles. Diastereocontrol can be achieved through the choice of catalyst (Brønsted or Lewis acid). The formation of tetrahydrofurans was shown to be highly enantiospecific when chiral cyclopropanes are employed. A series of mechanistic and kinetic experiments was conducted to elucidate a plausible catalytic cycle and to rationalize the stereochemical outcome.
Collapse
Affiliation(s)
- Nils L. Ahlburg
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Oliver Hergert
- Technische Universität BraunschweigInstitute of Organic ChemistryHagenring 3038106BraunschweigGermany
| | - Peter G. Jones
- Technische Universität BraunschweigInstitute of Inorganic and Analytical ChemistryHagenring 3038106BraunschweigGermany
| | - Daniel B. Werz
- Albert-Ludwigs-Universität FreiburgInstitute of Organic ChemistryAlbertstraße 2179104Freiburg (Breisgau)Germany
| |
Collapse
|
14
|
Ahlburg NL, Hergert O, Jones PG, Werz DB. Donor‐Acceptor Cyclopropanes: Activation Enabled by a Single, Vinylogous Acceptor. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202214390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Nils L. Ahlburg
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Oliver Hergert
- Technische Universität Braunschweig Institute of Organic Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Peter G. Jones
- Technische Universität Braunschweig Institute of Inorganic and Analytical Chemistry Hagenring 30 38106 Braunschweig Germany
| | - Daniel B. Werz
- Albert-Ludwigs-Universität Freiburg Institute of Organic Chemistry Albertstraße 21 79104 Freiburg (Breisgau) Germany
| |
Collapse
|
15
|
Meenakshi M, Srinivasan K. SnCl 4-mediated one-pot synthesis of 2,4,5-trisubstituted thiazoles from nitro-substituted donor–acceptor cyclopropanes and thioamides. Org Biomol Chem 2022; 20:8741-8746. [DOI: 10.1039/d2ob01604d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The treatment of nitro-substituted donor–acceptor cyclopropanes with SnCl4 and the subsequent reaction with thioamides provide one-pot access to thiazoles.
Collapse
Affiliation(s)
- Maniarasu Meenakshi
- School of Chemistry, Bharathidasan University, Tiruchirappalli-620 024, Tamil Nadu, India
| | - Kannupal Srinivasan
- School of Chemistry, Bharathidasan University, Tiruchirappalli-620 024, Tamil Nadu, India
| |
Collapse
|