1
|
Zhao H, Cuomo VD, Tian W, Romano C, Procter DJ. Light-assisted functionalization of aryl radicals towards metal-free cross-coupling. Nat Rev Chem 2025; 9:61-80. [PMID: 39548311 DOI: 10.1038/s41570-024-00664-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/01/2024] [Indexed: 11/17/2024]
Abstract
The many synthetic possibilities that arise when using radical intermediates, in place of their polar counterparts, make contemporary radical chemistry research an exhilarating field. The introduction of photocatalysis has helped tame aryl radicals, leading to a resurgence of interest in their chemistry, and an expansion of viable coupling partners and attainable transformations. These methods are more selective and safer than classical approaches, and they utilize new radical precursors. Given the importance of sustainability in current organic synthesis and our interest in light-assisted metal-free transformations, this Review focuses on recent advances in the use of aryl radicals in photoinduced cross-couplings that do not rely on metals for the crucial bond-forming event, and it is structured according to the key step that the aryl radicals engage in.
Collapse
Affiliation(s)
- Huaibo Zhao
- Department of Chemistry, University of Manchester, Manchester, UK
| | | | - Wei Tian
- Department of Chemistry, University of Manchester, Manchester, UK
| | - Ciro Romano
- Department of Chemistry, University of Manchester, Manchester, UK.
| | - David J Procter
- Department of Chemistry, University of Manchester, Manchester, UK.
| |
Collapse
|
2
|
Dong B, Qi W, Chen Y, Zhang Y, Gu S, Zhao J, Zhou Q, Shen J, Xie L. Stabilized Carbon Radical-Mediated Assembly of Arylthianthrenium Salts, Alkenes and Amino Acid/Peptide Derivatives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411579. [PMID: 39573977 PMCID: PMC11727398 DOI: 10.1002/advs.202411579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/07/2024] [Indexed: 01/14/2025]
Abstract
Efficiently assembling amino acids and peptides with bioactive molecules facilitates the modular and streamlined synthesis of a diverse library of peptide-related compounds. Particularly notable is their application in pharmaceutical development, leveraging site-selective late-stage functionalization. Here, a visible light-induced three-component reaction involving arylthianthrenium salts, amino acid/peptide derivatives, and alkenes are introduced. This approach utilizes captodatively-stabilized carbon radicals to enable radical-radical C─C coupling, effectively constructing complex bioactive molecules. This method offers a promising alternative route for modular synthesis of peptide-derived bio-relevant compounds.
Collapse
Affiliation(s)
- Bo Dong
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Weiguan Qi
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Yifeng Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Yufei Zhang
- State Key Laboratory of Natural MedicinesDepartment of Organic ChemistryChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Shiyu Gu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Jianlin Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| | - Qingfa Zhou
- State Key Laboratory of Natural MedicinesDepartment of Organic ChemistryChina Pharmaceutical UniversityNanjing210009P. R. China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
- Jiangsu Engineering Research Center of Interfacial ChemistryNanjing UniversityNanjing210023P. R. China
| | - Lan‐Gui Xie
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials ScienceNanjing Normal UniversityNanjing210023P. R. China
| |
Collapse
|
3
|
Timmann S, Feng Z, Alcarazo M. Recent Applications of Sulfonium Salts in Synthesis and Catalysis. Chemistry 2024; 30:e202402768. [PMID: 39282878 DOI: 10.1002/chem.202402768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Indexed: 11/06/2024]
Abstract
The use of sulfonium salts in organic synthesis has experienced a dramatic increase during the last years that can arguably be attributed to three main factors; the development of more direct and efficient synthetic methods that make easily available sulfonium reagents of a wide structural variety, their intrinsic thermal stability, which facilitates their structural modification, handling and purification even on large scale, and the recognition that their reactivity resembles that of hypervalent iodine compounds and therefore, they can be used as replacement of such reagents for most of their uses. This renewed interest has led to the improvement of already existing reactions, as well as to the discovery of unprecedented transformations; in particular, by the implementation of photocatalytic protocols. This review aims to summarize the most recent advancements on the area focusing on the work published during and after 2020. The scope of the methods developed will be highlighted and their limitations critically evaluated.
Collapse
Affiliation(s)
- Sven Timmann
- Institut für Organische und Biomolekulare Chemie, Georg-August University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Zeyu Feng
- Institut für Organische und Biomolekulare Chemie, Georg-August University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg-August University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| |
Collapse
|
4
|
Sun J, Wei Y, Lv T, Wang C, Song S, Zhou J, Li J. Organic Photoredox Catalytic Difluoroalkylation of Unactivated Olefins to Access Difluoro-Containing Tetrahydropyridazines. Org Lett 2024. [PMID: 39541099 DOI: 10.1021/acs.orglett.4c03829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Herein, we disclose a readily available phenothiazine derivative as an organocatalyst, which upon excitation with 371 nm light acquires a strongly reducing power and serves to induce the radical cascade difluoromethylation/cyclization reaction of N-homoallylacetohydrazides. A variety of CF2COR-tetrahydropyridazines have been obtained in moderate to excellent yields. This catalytic platform proceeds under metal-free conditions with a wide substrate scope and broad functional group compatibility, which unlocks the new reactivity of phenothiazine derivatives and adds significant synthetic value to N-heterocycles.
Collapse
Affiliation(s)
- Jun Sun
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yu Wei
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ting Lv
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Chaodong Wang
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Shengjie Song
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jiadi Zhou
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Jianjun Li
- Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- Taizhou Key Laboratory of Advanced Manufacturing Technology, Taizhou Institute, Zhejiang University of Technology, Taizhou 318014, P. R. China
| |
Collapse
|
5
|
Liu MJ, Fayad E, Abu Ali OA, Tao XF, Qin HL. Synthesis of α-Bromo Arylethyl Sulfonyl Fluorides and β-Arylethenesulfonyl Fluorides via Copper-Catalyzed Meerwein Arylation. J Org Chem 2024; 89:13709-13718. [PMID: 39151070 DOI: 10.1021/acs.joc.4c01002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2024]
Abstract
A practical copper-catalyzed process for the synthesis of the β-arylethenesulfonyl fluorides is described. A series of α-bromo arylethyl sulfonyl fluorides was prepared via Meerwein reaction from arenediazonium tetrafluoroborates and ethenesulfonyl fluoride (ESF) under mild conditions. The following β-arylethenesulfonyl fluorides were further obtained through a β-elimination reaction. This protocol features excellent regio- and stereoselectivity and broad substrate scope.
Collapse
Affiliation(s)
- Ming-Jian Liu
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Eman Fayad
- Department of Biotechnology, College of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ola A Abu Ali
- Department of Chemistry, College of Science, Taif University, Taif 21944, Saudi Arabia
| | - Xiang-Feng Tao
- School of Chemistry, Chemical Engineering and Life Sciences,Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| | - Hua-Li Qin
- State Key Laboratory of Silicate Materials for Architectures and School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, People's Republic of China
| |
Collapse
|
6
|
Li S, Li X, Zhao K, Yang X, Xu J, Xu HJ. Defluorinative Haloalkylation of Unactivated Alkenes Enabled by Dual Photoredox and Copper Catalysis. J Org Chem 2024; 89:13518-13529. [PMID: 39253778 DOI: 10.1021/acs.joc.4c01707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
A three-component defluorinative haloalkylation of alkenes with trifluoromethyl compounds and TBAX (X = Cl, Br) via dual photoredox/copper catalysis is reported. The mild conditions are compatible with a wide array of activated trifluoromethyl aromatics bearing diverse substituents, and various nonactivated terminal and internal alkenes, enabling straightforward access to synthetically valuable γ-gem-difluoroalkyl halides with high efficiency. Mechanistic studies indicate that the [Cu] complexes not only serve as XAT catalysts but also facilitate the SET reduction of trifluoromethyl groups by photocatalysts. Additionally, the resulting alkyl halide products can serve as versatile conversion intermediates for the synthesis of a diverse range of γ-gem-difluoroalkyl compounds.
Collapse
Affiliation(s)
- Shiyu Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xinguang Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Kuikui Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xinyu Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Jun Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Hua-Jian Xu
- School of Chemistry and Chemical Engineering, Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei 230009, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| |
Collapse
|
7
|
Wu Q, Li X, Ma J, Shi Y, Lv J, Yang D. Arylcyanation of Styrenes by Photoactive Electron Donor-Acceptor Complexes/Copper Catalysis. Org Lett 2024; 26:7949-7955. [PMID: 39259680 DOI: 10.1021/acs.orglett.4c02992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
A novel electron donor-acceptor (EDA) complex/copper catalysis model has been proposed for the construction of 2,3-diarylpropionitriles under visible light conditions. The developed protocol proceeds via intermolecular charge transfer between the photoactive EDA complex of dibutamine (DBA), aryl thianthrenium salts, and trimethylsilyl cyanide (TMSCN), followed by a copper catalytic cycle. UV-vis absorption measurements confirm the participation of EDA complexes as reactive intermediates. This three-component process proceeds smoothly in the presence of pharmaceutically relevant core structures and sensitive functional groups, which offers the possibility of the precise editing of drug molecules with important scaffolds.
Collapse
Affiliation(s)
- Qilong Wu
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xufeng Li
- Zhejiang Wansheng Co., Ltd., Linhai, Zhejiang 317000, P. R. China
| | - Jie Ma
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yongjia Shi
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jian Lv
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Daoshan Yang
- College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
8
|
Zhao B, Liu YX, Liang PP, Hu GQ, Liu JH. S-Arylation of Thioic S-Acid Using Thianthrenium Salts via Photoactivation of Electron Donor-Acceptor Complex. J Org Chem 2024; 89:12508-12513. [PMID: 39135492 DOI: 10.1021/acs.joc.4c01473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Thioesters make up an important class of bioactive compounds. Due to their chemoselectivity, they have been widely used in the synthesis of a wide range of complex bioactive molecules and natural products. At present, chemists have developed a variety of methods for the preparation of thioester compounds. However, these methods usually require the use of transition metal catalysis or harsh reaction conditions. The strategy of synthesizing thioester compounds via visible light-induced electron donor-acceptor (EDA) complex reactions avoids the problems associated with conventional methods through the development of photocatalysis. Here we report a sustainable method for thiocarbonylating aryl sulfonium salts via a visible light-induced EDA complex process without transition metals.
Collapse
Affiliation(s)
- Bin Zhao
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Yong-Xin Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Ping-Ping Liang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Guo-Qin Hu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Jing-Hui Liu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
9
|
Zhang J, Jiao M, Lu Z, Lu H, Wang M, Shi Z. Hydrodeuteroalkylation of Unactivated Olefins Using Thianthrenium Salts. Angew Chem Int Ed Engl 2024; 63:e202409862. [PMID: 38866703 DOI: 10.1002/anie.202409862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/10/2024] [Accepted: 06/12/2024] [Indexed: 06/14/2024]
Abstract
Isotopically labeled alkanes play a crucial role in organic and pharmaceutical chemistry. While some deuterated methylating agents are readily available, the limited accessibility of other deuteroalkyl reagents has hindered the synthesis of corresponding products. In this study, we introduce a nickel-catalyzed system that facilitates the synthesis of various deuterium-labeled alkanes through the hydrodeuteroalkylation of d2-labeled alkyl TT salts with unactivated alkenes. Diverging from traditional deuterated alkyl reagents, alkyl thianthrenium (TT) salts can effectively and selectively introduce deuterium at α position of alkyl chains using D2O as the deuterium source via a single-step pH-dependent hydrogen isotope exchange (HIE). Our method allows for high deuterium incorporation, and offers precise control over the site of deuterium insertion within an alkyl chain. This technique proves to be invaluable for the synthesis of various deuterium-labeled compounds, especially those of pharmaceutical relevance.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Mengjie Jiao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zheng Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
- Jiangsu Nata Opto-electronic Material Co., Ltd., Suzhou, 215126, China
| | - Hongjian Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
- School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| |
Collapse
|
10
|
Gan Z, Liu S, Chen J, Chen Z, Zhang Y, Wang L, Wang H, Li Y, Jin Y. A Modular Three-Component Approach for Site-selective Tandem Arene Thiophosphorylation. Org Lett 2024; 26:7155-7160. [PMID: 39167484 DOI: 10.1021/acs.orglett.4c02525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Thiophosphates serve as pivotal reagents within the realms of both organic and inorganic synthesis, with their most notable applications observed in agricultural chemistry. This manuscript delineates a modular three-component synthetic strategy for site-selective arene C-H thiophosphorylation with thianthrenium salt, 1,4-diazabicyclo[2.2.2]octane-sulfur dioxide (DABSO), and diarylphosphine oxides as substrates. This approach facilitates the metal-free and green synthesis of a diverse spectrum of S-aryl phosphorothioates through C-H functionalization and late-stage modification showcasing practicality and broad applicability.
Collapse
Affiliation(s)
- Ziyu Gan
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Shuyang Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Jiajin Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Ziyang Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yongqiang Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Lifang Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Han Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yihao Li
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yunhe Jin
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
11
|
Li B, Bunescu A, Drazen D, Rolph K, Michalland J, Gaunt MJ. A Modular Dual-Catalytic Aryl-Chlorination of Alkenes. Angew Chem Int Ed Engl 2024; 63:e202405939. [PMID: 39041421 DOI: 10.1002/anie.202405939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Indexed: 07/24/2024]
Abstract
Alkyl chlorides are a class of versatile building blocks widely used to generate C(sp3)-rich scaffolds through transformation such as nucleophilic substitution, radical addition reactions and metal-catalyzed cross-coupling processes. Despite their utility in the synthesis of high-value functional molecules, distinct methods for the preparation of alkyl chlorides are underrepresented. Here, we report a visible-light-mediated dual catalysis strategy for the modular synthesis of highly functionalized and structurally diverse arylated chloroalkanes via the coupling of diaryliodonium salts, alkenes and potassium chloride. A distinctive aspect of this transformation is a ligand-design-driven approach for the development of a copper(II)-based atom-transfer catalyst that enables the aryl-chlorination of electron-poor alkenes, complementing its iron(III)-based counterpart that accommodates non-activated aliphatic alkenes and styrene derivatives. The complementarity of the two dual catalytic systems allows the efficient aryl-chlorination of alkenes bearing different stereo-electronic properties and a broad range of functional groups, maximizing the structural diversity of the 1-aryl, 2-chloroalkane products.
Collapse
Affiliation(s)
- Bo Li
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1EW
| | - Ala Bunescu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1EW
| | - Daniel Drazen
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1EW
| | - Katherine Rolph
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1EW
| | - Jean Michalland
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1EW
- Innovation Centre in Digital Molecular Technologies Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1EW
- Compound Synthesis & Management, Discovery Sciences, Biopharmaceuticals R&D, The Discovery Centre, AstraZeneca Biomedical Campus, 1 Francis Crick Avenue, Cambridge, United Kingdom, CB2 0AA
| | - Matthew J Gaunt
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1EW
- Innovation Centre in Digital Molecular Technologies Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1EW
| |
Collapse
|
12
|
Simon H, Zangarelli A, Bauch T, Ackermann L. Ruthenium(II)-Catalyzed Late-Stage Incorporation of N-Aryl Triazoles and Tetrazoles with Sulfonium Salts via C-H Activation. Angew Chem Int Ed Engl 2024; 63:e202402060. [PMID: 38618872 DOI: 10.1002/anie.202402060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
The late-stage functionalization of active pharmaceutical ingredients is a key challenge in medicinal chemistry. Furthermore, N-aryl triazoles and tetrazoles are important structural motifs with the potential to boost the activity of diverse drug molecules. Using easily accessible dibenzothiophenium salts for the ruthenium-catalyzed C-H arylation, these scaffolds were introduced into a variety of bioactive compounds. Our methodology uses cost-efficient ruthenium, KOAc as a mild base and gives access to a plethora of highly decorated triazole and tetrazole containing drug derivatives.
Collapse
Affiliation(s)
- Hendrik Simon
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Agnese Zangarelli
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Tristan Bauch
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
- Wöhler Research Institute for Sustainable Chemistry, Georg-August-Universität Göttingen, Tammannstraße 2, 37077, Göttingen, Germany
| |
Collapse
|
13
|
Jiao M, Zhang J, Wang M, Lu H, Shi Z. Metallaphotoredox deuteroalkylation utilizing thianthrenium salts. Nat Commun 2024; 15:5067. [PMID: 38871683 DOI: 10.1038/s41467-024-48590-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Deuterium labeling compounds play a crucial role in organic and pharmaceutical chemistry. The synthesis of such compounds typically involves deuterated building blocks, allowing for the incorporation of deuterium atoms and functional groups into a target molecule in a single step. Unfortunately, the limited availability of synthetic approaches to deuterated synthons has impeded progress in this field. Here, we present an approach utilizing alkyl-substituted thianthrenium salts that efficiently and selectively introduce deuterium at the α position of alkyl chains through a pH-dependent HIE process, using D2O as the deuterium source. The resulting α-deuterated alkyl thianthrenium salts, which bear two deuterium atoms, exhibit excellent selectivity and deuterium incorporation in electrophilic substitution reactions. Through in situ formation of isotopically labelled alkyl halides, these thianthrenium salts demonstrate excellent compatibility in a series of metallaphotoredox cross-electrophile coupling with (hetero)aryl, alkenyl, alkyl bromides, and other alkyl thianthrenium salts. Our technique allows for a wide range of substrates, high deuterium incorporation, and precise control over the site of deuterium insertion within a molecule such as the benzyl position, allylic position, or any alkyl chain in between, as well as neighboring heteroatoms. This makes it invaluable for synthesizing various deuterium-labeled compounds, especially those with pharmaceutical significance.
Collapse
Affiliation(s)
- Mengjie Jiao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jie Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Hongjian Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China.
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China.
| |
Collapse
|
14
|
Dong XX, Liu JG, Zhang HX, Zhang B. A Practical and Modular Method for Direct C-H Functionalization of the BODIPY Core via Thianthrenium Salts. Chemistry 2024:e202401929. [PMID: 38818768 DOI: 10.1002/chem.202401929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 05/29/2024] [Accepted: 05/31/2024] [Indexed: 06/01/2024]
Abstract
Direct structural modification of small-molecule fluorophores represents a straightforward and appealing strategy for accessing new fluorescent dyes with desired functionalities. We report herein a general and efficient visible-light-mediated method for the direct C-H functionalization of BODIPY, an important fluorescent chromophore, using readily accessible and bench-stable aryl and alkenylthianthrenium salts. This practical approach operates at room temperature with extraordinary site-selectivity, providing a step-economical means to construct various valuable aryl- and alkenyl-substituted BODIPY dyes. Remarkably, this protocol encompasses a broad substrate scope and excellent functional-group tolerance, and allows for the modular synthesis of sophisticated symmetrical and asymmetrical disubstituted BODIPYs by simply employing different combinations of thianthrenium salts. Moreover, the late-stage BODIPY modification of complex drug molecules further highlights the potential of this novel methodology in the synthesis of fluorophore-drug conjugates.
Collapse
Affiliation(s)
- Xin-Xin Dong
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Jing-Guo Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Hao-Xiang Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Bo Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| |
Collapse
|
15
|
Luo M, Zhu S, Yang C, Guo L, Xia W. Photoinduced Regioselective Fluorination and Vinylation of Remote C(sp 3)-H Bonds Using Thianthrenium Salts. Org Lett 2024; 26:4388-4393. [PMID: 38752694 DOI: 10.1021/acs.orglett.4c01420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Herein, a photoredox-driven practical protocol for fluorinated alkene synthesis using easily accessible and modular thianthrenium salts with electron-withdrawing alkynes or propargyl alcohols is reported. Vinyl radical intermediates, formed by the reaction between the alkyl or trifluoromethyl thianthrenium salts and electronically diverse alkynes, can mediate the key 1,5-HAT process of regioselective C(sp3)-H fluorination and vinylation. This protocol provides straightforward access to structurally diverse trifluoromethyl- or distally fluoro-functionalized alkene products in 21-79% yields with a broad substrate range under mild photocatalytic conditions.
Collapse
Affiliation(s)
- Mengqi Luo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Shibo Zhu
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
16
|
Cai Y, Gaurav G, Ritter T. 1,4-Aminoarylation of Butadienes via Photoinduced Palladium Catalysis. Angew Chem Int Ed Engl 2024; 63:e202311250. [PMID: 38334292 DOI: 10.1002/anie.202311250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/10/2024]
Abstract
A visible-light-induced, three-component palladium-catalyzed 1,4-aminoarylation of butadienes with readily available aryl halides and aliphatic amines has been developed, affording allylamines with excellent E-selectivity. The reaction exhibits exceptional control over chemo-, regio-, and stereoselectivity, a broad substrate scope, and high functional group compatibility, as demonstrated by the late-stage functionalization of bioactive molecules. Mechanistic investigations are consistent with a photoinduced radical Pd(0)-Pd(I)-Pd(II)-Pd(0) Heck-Tsuji-Trost allylation cascade.
Collapse
Affiliation(s)
- Yuan Cai
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470, Mülheim an der Ruhr, Germany
| | - Gaurav Gaurav
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470, Mülheim an der Ruhr, Germany
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
17
|
Qi W, Gu S, Xie LG. Reductive Radical-Polar Crossover Enabled Carboxylative Alkylation of Aryl Thianthrenium Salts with CO 2 and Styrenes. Org Lett 2024; 26:728-733. [PMID: 38214477 DOI: 10.1021/acs.orglett.3c04183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Carboxylic functionalities are among the pivotal groups in bioactive molecules and in the synthesis of new lead compounds because of their unique character in the formation of hydrogen bonds and the possibility of constructing molecular complexes via amide couplings. We adopt the reductive radical-polar crossover strategy to introduce carboxyalkyl groups into arenes with styrenes and CO2 via thianthrenium salts. This protocol exhibits excellent potential as a straightforward and modular platform for site-selective carboxylative derivation of bioactive molecules.
Collapse
Affiliation(s)
- Weiguan Qi
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shiyu Gu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Lan-Gui Xie
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
18
|
Caldarelli M, Rezzi SJ, Colombo N, Pirali T, Papeo G. Photocatalytic Radical Coupling of Organoborates with α-Halogenated Electron-Poor Olefins. J Org Chem 2024; 89:633-643. [PMID: 38079578 DOI: 10.1021/acs.joc.3c02386] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Herein, we report the visible-light-mediated addition of organoborates to α-halogenated electron-poor olefins enabled by an environmentally benign metal-free catalyst. The method accommodates a variety of boronic acid derivatives as well as alkenes and delivers the corresponding saturated α-halo-derivatives in up to 90% yields. The obtained products are high-value building blocks in organic synthesis, allowing for a variety of follow-up transformations.
Collapse
Affiliation(s)
- Marina Caldarelli
- Nerviano Medical Sciences Srl, viale Pasteur 10, 20014 Nerviano, Milano, Italy
| | - Sarah Jane Rezzi
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | | | - Tracey Pirali
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Gianluca Papeo
- Nerviano Medical Sciences Srl, viale Pasteur 10, 20014 Nerviano, Milano, Italy
| |
Collapse
|
19
|
Zhang W, Liu T, Ang HT, Luo P, Lei Z, Luo X, Koh MJ, Wu J. Modular and Practical 1,2-Aryl(Alkenyl) Heteroatom Functionalization of Alkenes through Iron/Photoredox Dual Catalysis. Angew Chem Int Ed Engl 2023; 62:e202310978. [PMID: 37699857 DOI: 10.1002/anie.202310978] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
Efficient methods for synthesizing 1,2-aryl(alkenyl) heteroatomic cores, encompassing heteroatoms such as nitrogen, oxygen, sulfur, and halogens, are of significant importance in medicinal chemistry and pharmaceutical research. In this study, we present a mild, versatile and practical photoredox/iron dual catalytic system that enables access to highly privileged 1,2-aryl(alkenyl) heteroatomic pharmacophores with exceptional efficiency and site selectivity. Our approach exhibits an extensive scope, allowing for the direct utilization of a wide range of commodity or commercially available (hetero)arenes as well as activated and unactivated alkenes with diverse functional groups, drug scaffolds, and natural product motifs as substrates. By merging iron catalysis with the photoredox cycle, a vast array of alkene 1,2-aryl(alkenyl) functionalization products that incorporate a neighboring azido, amino, halo, thiocyano and nitrooxy group were secured. The scalability and ability to rapid synthesize numerous bioactive small molecules from readily available starting materials highlight the utility of this protocol.
Collapse
Affiliation(s)
- Weigang Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Tao Liu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Hwee Ting Ang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Penghao Luo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Zhexuan Lei
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Xiaohua Luo
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Ming Joo Koh
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| |
Collapse
|
20
|
Cai Y, Chatterjee S, Ritter T. Photoinduced Copper-Catalyzed Late-Stage Azidoarylation of Alkenes via Arylthianthrenium Salts. J Am Chem Soc 2023. [PMID: 37307146 DOI: 10.1021/jacs.3c04016] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The arylethylamine pharmacophore is conserved across a range of biologically active natural products and pharmaceuticals, particularly in molecules that act on the central nervous system. Herein, we present a photoinduced copper-catalyzed azidoarylation of alkenes at a late stage with arylthianthrenium salts, allowing access to highly functionalized acyclic (hetero)arylethylamine scaffolds that are otherwise difficult to access. A mechanistic study is consistent with a rac-BINAP-CuI-azide (2) as the photoactive catalytic species. We show the utility of the new method by the expedient synthesis of racemic melphalan in four steps through C-H functionalization.
Collapse
Affiliation(s)
- Yuan Cai
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Sagnik Chatterjee
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | - Tobias Ritter
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
21
|
Higuchi K, Yamamoto K, Nakamura S, Naruse H, Ito M, Sugiyama S. Preparation of Alkyl Di( p-tolyl)sulfonium Salts and Their Application in Metal-Free C(sp 3)-C(sp 3) and C(sp 3)-C(sp 2) Bond Formations. Org Lett 2023; 25:3766-3771. [PMID: 37167562 DOI: 10.1021/acs.orglett.3c01233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Alkyldiarylsulfonium salts were synthesized by a combination of active sulfonium species, prepared through the activation of diarylsulfoxide, and alkyl nucleophiles. The isolated sulfonium salts were subjected to the allylation and cyclopropanation of the active methylene compounds and metal-free C(sp3)-C(sp2) couplings via oxyallyl cation intermediates under mild conditions. The series of reactions included an umpolung strategy for the coupling of alkyl nucleophiles and metal-free C-C bond formation using sulfonium salts.
Collapse
Affiliation(s)
- Kazuhiro Higuchi
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Kai Yamamoto
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Shunsuke Nakamura
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Haruka Naruse
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Motoki Ito
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Shigeo Sugiyama
- Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| |
Collapse
|
22
|
Cai Y, Ritter T. Meerwein-type Bromoarylation with Arylthianthrenium Salts. Angew Chem Int Ed Engl 2022; 61:e202209882. [PMID: 36070220 PMCID: PMC9828184 DOI: 10.1002/anie.202209882] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Indexed: 01/12/2023]
Abstract
Herein, we report a photocatalyzed Meerwein-type bromoarylation of alkenes with stable arylthianthrenium salts, formed by site-selective C-H thianthrenation. This protocol can be applied to late-stage functionalization of a variety of biomolecules that are difficult to access by other aryl coupling reagents. Halogen introduction allows for a variety of follow-up transformations, affording numerous biologically active skeletons.
Collapse
Affiliation(s)
- Yuan Cai
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| | - Tobias Ritter
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 145470Mülheim an der RuhrGermany
| |
Collapse
|