1
|
Xie JQ, Ji D, Chang Z, Wu Y, Lv Q, Liu X, Shi L. Synergy of P doping and crystallinity modulation in carbon nitride for enhancing photocatalytic uranyl reduction. J Colloid Interface Sci 2025; 678:63-76. [PMID: 39180849 DOI: 10.1016/j.jcis.2024.08.128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/11/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Doping modification is a useful way to promote the catalytic activity of carbon nitride (CN). However, most doped CNs have lower structural symmetry and several edge defects, which hinder the transfer of charge carriers. This work reports a P-doped crystalline carbon nitride (crystalline PCN) for the efficient photoreduction of uranyl. The thermal polymerization and salt post-treatment convert the amorphous PCN into crystalline PCN. Compared to the pristine CN, the crystalline PCN has over 1620 % higher activity for uranyl (U(VI)) reduction, reaching a 97.8 % reduction rate in 60 min. Furthermore, the 2-PCN shows excellent stability and a U(VI) removal efficiency >85.7 % in the pH range of 5-8. Characterization analysis reveal that both the P doping and crystalline modulation do not obviously change their morphology, light absorption property and energy band structure, but markedly promote the delocalization of electrons around the doped P atoms, thereby severely inhibit direct electron-hole recombination. Thus, the more efficient separation of charge carriers generates more reactive specials to participate in the photocatalytic uranyl reduction reaction. This study demonstrates a dual-modification strategy for the rational synthesis of highly active metal-free CN-based photocatalysts for uranyl reduction.
Collapse
Affiliation(s)
- Jin-Qi Xie
- Hunan Key Laboratory for the Design and Application of Actinide Complexes, College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Daozhuo Ji
- School of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ziyang Chang
- Hunan Key Laboratory for the Design and Application of Actinide Complexes, College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Yuhong Wu
- Hunan Key Laboratory for the Design and Application of Actinide Complexes, College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Qiqi Lv
- Hunan Key Laboratory for the Design and Application of Actinide Complexes, College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Xiaokang Liu
- Hunan Key Laboratory for the Design and Application of Actinide Complexes, College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China
| | - Lang Shi
- Hunan Key Laboratory for the Design and Application of Actinide Complexes, College of Chemistry and Chemical Engineering, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
2
|
Shvalagin V, Tarakina N, Badamdorj B, Lahrsen IM, Bargiacchi E, Bardow A, Deng Z, Wang W, Phillips DL, Guo Z, Zhang G, Tang J, Savateev O. Simultaneous Photocatalytic Production of H 2 and Acetal from Ethanol with Quantum Efficiency over 73% by Protonated Poly(heptazine imide) under Visible Light. ACS Catal 2024; 14:14836-14854. [PMID: 39386918 PMCID: PMC11459976 DOI: 10.1021/acscatal.4c04180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024]
Abstract
In this work, protonated poly(heptazine imide) (H-PHI) was obtained by adding acid to the suspension of potassium PHI (K-PHI) in ethanol. It was established that the obtained H-PHI demonstrates very high photocatalytic activity in the reaction of hydrogen formation from ethanol in the presence of Pt nanoparticles under visible light irradiation in comparison with K-PHI. This enhancement can be attributed to improved efficiency of photogenerated charge transfer to the photocatalyst's surface, where redox processes occur. Various factors influencing the system's activity were evaluated. Notably, it was discovered that the conditions of acid introduction into the system can significantly affect the size of Pt (cocatalyst metal) deposition on the H-PHI surface, thereby enhancing the photocatalytic system's stability in producing molecular hydrogen. It was established that the system can operate efficiently in the presence of air without additional components on the photocatalyst surface to block air access. Under optimal conditions, the apparent quantum yield of molecular hydrogen production at 410 nm is around 73%, the highest reported value for carbon nitride materials to date. The addition of acid not only increases the activity of the reduction part of the system but also leads to the formation of a value-added product from ethanol-1,1-diethoxyethane (acetal) with high selectivity.
Collapse
Affiliation(s)
- Vitaliy Shvalagin
- Max
Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
| | - Nadezda Tarakina
- Max
Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
| | - Bolortuya Badamdorj
- Max
Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, Potsdam 14476, Germany
| | - Inga-Marie Lahrsen
- Energy
& Process Systems Engineering, Department of Mechanical and Process
Engineering, ETH Zurich, Tannenstrasse 3, Zurich 8092, Switzerland
| | - Eleonora Bargiacchi
- Energy
& Process Systems Engineering, Department of Mechanical and Process
Engineering, ETH Zurich, Tannenstrasse 3, Zurich 8092, Switzerland
| | - Andre Bardow
- Energy
& Process Systems Engineering, Department of Mechanical and Process
Engineering, ETH Zurich, Tannenstrasse 3, Zurich 8092, Switzerland
| | - Ziqi Deng
- Department
of Chemistry, The University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Wenchao Wang
- Department
of Chemistry, The University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - David Lee Phillips
- Department
of Chemistry, The University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Zhengxiao Guo
- Department
of Chemistry, The University of Hong Kong, Kowloon, Hong Kong SAR 999077, China
| | - Guigang Zhang
- State
Key Laboratory of Photocatalysis on Energy and Environment, College
of Chemistry, Fuzhou University, Fujian 350116, China
| | - Junwang Tang
- Industrial
Catalysis Center, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Oleksandr Savateev
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, New
Territories, Kowloon 999077, Hong Kong
| |
Collapse
|
3
|
Shu M, Shen K, Wang J, Wang S, Zhu X, Xu C, Sun X, Jin S, Zhou H. Manipulating Charge Distribution of Graphitic Carbon Nitride for Boosting NIR-II Light-Activated Reactive Oxygen Species Generation. ACS APPLIED BIO MATERIALS 2024; 7:6306-6312. [PMID: 39236263 DOI: 10.1021/acsabm.4c01024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Structure engineering is of great importance to enhance the carrier separation efficiency of multiphoton absorption (MPA) materials for near-infrared (NIR) light-driven reactive oxygen species (ROS) generation. In this study, the MPA-responsive potassium/cyano group-functionalized graphitic carbon nitride was investigated, demonstrating charge redistribution and improved carrier separation efficiency by density functional theory calculations and experimental results. With various types of boosted ROS generation under UV-vis or NIR-II light irradiation, the potassium/cyano group-functionalized graphitic carbon nitride could achieve efficient multiphoton photodynamic therapy after reducing the particle size. This study developed a simple strategy to manipulate charge distribution for booting NIR light-activated ROS generation in efficient multiphoton photodynamic therapy.
Collapse
Affiliation(s)
- Mingming Shu
- School of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Kaidong Shen
- School of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Junjun Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Sen Wang
- School of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Xiaojiao Zhu
- School of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Chang Xu
- School of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Xianshun Sun
- School of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
| | - Sen Jin
- Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, Hefei 230601, P. R. China
| | - Hongping Zhou
- School of Chemistry and Chemical Engineering, Key Laboratory of Structure and Functional Regulation of Hybrid Materials Ministry of Education, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials of Anhui Province, Anhui University, Hefei 230601, P. R. China
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, PR China
| |
Collapse
|
4
|
Zhang J, Yang X, Xu G, Biswal BK, Balasubramanian R. Accumulation of Long-Lived Photogenerated Holes at Indium Single-Atom Catalysts via Two Coordinate Nitrogen Vacancy Defect Engineering for Enhanced Photocatalytic Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309205. [PMID: 38733334 DOI: 10.1002/adma.202309205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/05/2024] [Indexed: 05/13/2024]
Abstract
Visible-light-driven photocatalytic oxidation by photogenerated holes has immense potential for environmental remediation applications. While the electron-mediated photoreduction reactions are often at the spotlight, active holes possess a remarkable oxidation capacity that can degrade recalcitrant organic pollutants, resulting in nontoxic byproducts. However, the random charge transfer and rapid recombination of electron-hole pairs hinder the accumulation of long-lived holes at the reaction center. Herein, a novel method employing defect-engineered indium (In) single-atom photocatalysts with nitrogen vacancy (Nv) defects, dispersed in carbon nitride foam (In-Nv-CNF), is reported to overcome these challenges and make further advances in photocatalysis. This Nv defect-engineered strategy produces a remarkable extension in the lifetime and an increase in the concentration of photogenerated holes in In-Nv-CNF. Consequently, the optimized In-Nv-CNF demonstrates a remarkable 50-fold increase in photo-oxidative degradation rate compared to pristine CN, effectively breaking down two widely used antibiotics (tetracycline and ciprofloxacin) under visible light. The contaminated water treated by In-Nv-CNF is completely nontoxic based on the growth of Escherichia coli. Structural-performance correlations between defect engineering and long-lived hole accumulation in In-Nv-CNF are established and validated through experimental and theoretical agreement. This work has the potential to elevate the efficiency of overall photocatalytic reactions from a hole-centric standpoint.
Collapse
Affiliation(s)
- Jingjing Zhang
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore
| | - Xuan Yang
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore
| | - Guofang Xu
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore
| | - Basanta Kumar Biswal
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore
| | - Rajasekhar Balasubramanian
- Department of Civil & Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, Singapore, 117576, Singapore
| |
Collapse
|
5
|
Actis A, Melchionna M, Filippini G, Fornasiero P, Prato M, Chiesa M, Salvadori E. Singlet-Triplet Energy Inversion in Carbon Nitride Photocatalysts. Angew Chem Int Ed Engl 2023; 62:e202313540. [PMID: 37801043 DOI: 10.1002/anie.202313540] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/07/2023]
Abstract
Time-resolved EPR (TR-EPR) demonstrates the formation of well-defined spin triplet excitons in carbon nitride. This permits to experimentally probe the extent of the triplet wavefunction which delocalizes over several tri-s-triazine units. Analysis of the temperature dependence of the TR-EPR signal reveals the mobility of the triplet excitons. By employing monochromatic light excitation in the range 430-600 nm, the energy of the spin triplet is estimated to be ≈0.2 eV above the conduction band edge, proving that the triplet exciton lies above the corresponding singlet. Comparison between amorphous and graphitic forms establishes the singlet-triplet inversion as a general feature of carbon nitride materials.
Collapse
Affiliation(s)
- Arianna Actis
- Department of Chemistry and NIS Centre, University of Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Michele Melchionna
- Department of Chemical and Pharmaceutical, INSTM UdR, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Giacomo Filippini
- Department of Chemical and Pharmaceutical, INSTM UdR, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical, INSTM UdR, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
- ICCOM-CNR URT, Via Licio Giorgieri 1, 34127, Trieste, Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical, INSTM UdR, University of Trieste, Via Licio Giorgieri 1, 34127, Trieste, Italy
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo Miramon 194, 20014, Donostia San Sebastián, Spain
- Basque Fdn Sci, Ikerbasque, 48013, Bilbao, Spain
| | - Mario Chiesa
- Department of Chemistry and NIS Centre, University of Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| | - Enrico Salvadori
- Department of Chemistry and NIS Centre, University of Torino, Via Pietro Giuria 7, 10125, Torino, Italy
| |
Collapse
|
6
|
Savateev O, Nolkemper K, Kühne TD, Shvalagin V, Markushyna Y, Antonietti M. Extent of carbon nitride photocharging controls energetics of hydrogen transfer in photochemical cascade processes. Nat Commun 2023; 14:7684. [PMID: 38001091 PMCID: PMC10674013 DOI: 10.1038/s41467-023-43328-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
Graphitic carbon nitride is widely studied in organic photoredox catalysis. Reductive quenching of carbon nitride excited state is postulated in many photocatalytic transformations. However, the reactivity of this species in the turn over step is less explored. In this work, we investigate electron and proton transfer from carbon nitride that is photocharged to a various extent, while the negative charge is compensated either by protons or ammonium cations. Strong stabilization of electrons by ammonium cations makes proton-coupled electron transfer uphill, and affords air-stable persistent carbon nitride radicals. In carbon nitrides, which are photocharged to a smaller extent, protons do not stabilize electrons, which results in spontaneous charge transfer to oxidants. Facile proton-coupled electron transfer is a key step in the photocatalytic oxidative-reductive cascade - tetramerization of benzylic amines. The feasibility of proton-coupled electron transfer is modulated by adjusting the extent of carbon nitride photocharging, type of counterion and temperature.
Collapse
Affiliation(s)
- Oleksandr Savateev
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China.
| | - Karlo Nolkemper
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
- Dynamics of Condensed Matter and Center for Sustainable System Design, Chair of Theoretical Chemistry, University of Paderborn, Warburger Str. 100, D-33098, Paderborn, Germany
| | - Thomas D Kühne
- Dynamics of Condensed Matter and Center for Sustainable System Design, Chair of Theoretical Chemistry, University of Paderborn, Warburger Str. 100, D-33098, Paderborn, Germany
- Center for Advanced Systems Understanding (CASUS) and Helmholtz-Zentrum Dresden-Rossendorf, Untermarkt 20, D-02826, Görlitz, Germany
- Institute of Artificial Intelligence, Chair of Computational System Sciences, Technische Universität Dresden, 01187, Dresden, Germany
| | - Vitaliy Shvalagin
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Yevheniia Markushyna
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
7
|
Kumar P, Singh G, Guan X, Lee J, Bahadur R, Ramadass K, Kumar P, Kibria MG, Vidyasagar D, Yi J, Vinu A. Multifunctional carbon nitride nanoarchitectures for catalysis. Chem Soc Rev 2023; 52:7602-7664. [PMID: 37830178 DOI: 10.1039/d3cs00213f] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Catalysis is at the heart of modern-day chemical and pharmaceutical industries, and there is an urgent demand to develop metal-free, high surface area, and efficient catalysts in a scalable, reproducible and economic manner. Amongst the ever-expanding two-dimensional materials family, carbon nitride (CN) has emerged as the most researched material for catalytic applications due to its unique molecular structure with tunable visible range band gap, surface defects, basic sites, and nitrogen functionalities. These properties also endow it with anchoring capability with a large number of catalytically active sites and provide opportunities for doping, hybridization, sensitization, etc. To make considerable progress in the use of CN as a highly effective catalyst for various applications, it is critical to have an in-depth understanding of its synthesis, structure and surface sites. The present review provides an overview of the recent advances in synthetic approaches of CN, its physicochemical properties, and band gap engineering, with a focus on its exclusive usage in a variety of catalytic reactions, including hydrogen evolution reactions, overall water splitting, water oxidation, CO2 reduction, nitrogen reduction reactions, pollutant degradation, and organocatalysis. While the structural design and band gap engineering of catalysts are elaborated, the surface chemistry is dealt with in detail to demonstrate efficient catalytic performances. Burning challenges in catalytic design and future outlook are elucidated.
Collapse
Affiliation(s)
- Prashant Kumar
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Gurwinder Singh
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Xinwei Guan
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Jangmee Lee
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Rohan Bahadur
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Kavitha Ramadass
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Pawan Kumar
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Md Golam Kibria
- Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
| | - Devthade Vidyasagar
- School of Material Science and Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Jiabao Yi
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| | - Ajayan Vinu
- Global Innovative Center for Advanced Nanomaterials, College of Engineering, Science and Environment (CESE), The University of Newcastle, University Drive, Callaghan, 2308, NSW, Australia.
| |
Collapse
|
8
|
Kobeleva E, Shabratova E, Azoulay A, MacQueen RW, Karjule N, Shalom M, Lips K, McPeak JE. Long-Term Characterization of Oxidation Processes in Graphitic Carbon Nitride Photocatalyst Materials via Electron Paramagnetic Resonance Spectroscopy. Molecules 2023; 28:6475. [PMID: 37764252 PMCID: PMC10537412 DOI: 10.3390/molecules28186475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/31/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Graphitic carbon nitride (gCN) materials have been shown to efficiently perform light-induced water splitting, carbon dioxide reduction, and environmental remediation in a cost-effective way. However, gCN suffers from rapid charge-carrier recombination, inefficient light absorption, and poor long-term stability which greatly hinders photocatalytic performance. To determine the underlying catalytic mechanisms and overall contributions that will improve performance, the electronic structure of gCN materials has been investigated using electron paramagnetic resonance (EPR) spectroscopy. Through lineshape analysis and relaxation behavior, evidence of two independent spin species were determined to be present in catalytically active gCN materials. These two contributions to the total lineshape respond independently to light exposure such that the previously established catalytically active spin system remains responsive while the newly observed, superimposed EPR signal is not increased during exposure to light. The time dependence of these two peaks present in gCN EPR spectra recorded sequentially in air over several months demonstrates a steady change in the electronic structure of the gCN framework over time. This light-independent, slowly evolving additional spin center is demonstrated to be the result of oxidative processes occurring as a result of exposure to the environment and is confirmed by forced oxidation experiments. This oxidized gCN exhibits lower H2 production rates and indicates quenching of the overall gCN catalytic activity over longer reaction times. A general model for the newly generated spin centers is given and strategies for the alleviation of oxidative products within the gCN framework are discussed in the context of improving photocatalytic activity over extended durations as required for future functional photocatalytic device development.
Collapse
Affiliation(s)
- Elizaveta Kobeleva
- Berlin Joint EPR Laboratory and EPR4Energy, Department Spins in Energy Conversion and Quantum Information Science (ASPIN), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Ekaterina Shabratova
- Berlin Joint EPR Laboratory and EPR4Energy, Department Spins in Energy Conversion and Quantum Information Science (ASPIN), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Adi Azoulay
- Department of Chemistry, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Rowan W. MacQueen
- Berlin Joint EPR Laboratory and EPR4Energy, Department Spins in Energy Conversion and Quantum Information Science (ASPIN), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Neeta Karjule
- Department of Chemistry, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Menny Shalom
- Department of Chemistry, Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel
| | - Klaus Lips
- Berlin Joint EPR Laboratory and EPR4Energy, Department Spins in Energy Conversion and Quantum Information Science (ASPIN), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
- Berlin Joint EPR Laboratory, Fachbereich Physik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Joseph E. McPeak
- Berlin Joint EPR Laboratory and EPR4Energy, Department Spins in Energy Conversion and Quantum Information Science (ASPIN), Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| |
Collapse
|
9
|
Marchi M, Raciti E, Gali SM, Piccirilli F, Vondracek H, Actis A, Salvadori E, Rosso C, Criado A, D'Agostino C, Forster L, Lee D, Foucher AC, Rai RK, Beljonne D, Stach EA, Chiesa M, Lazzaroni R, Filippini G, Prato M, Melchionna M, Fornasiero P. Carbon Vacancies Steer the Activity in Dual Ni Carbon Nitride Photocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303781. [PMID: 37409444 PMCID: PMC10502671 DOI: 10.1002/advs.202303781] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Indexed: 07/07/2023]
Abstract
The manipulation of carbon nitride (CN) structures is one main avenue to enhance the activity of CN-based photocatalysts. Increasing the efficiency of photocatalytic heterogeneous materials is a critical step toward the realistic implementation of sustainable schemes for organic synthesis. However, limited knowledge of the structure/activity relationship in relation to subtle structural variations prevents a fully rational design of new photocatalytic materials, limiting practical applications. Here, the CN structure is engineered by means of a microwave treatment, and the structure of the material is shaped around its suitable functionality for Ni dual photocatalysis, with a resulting boosting of the reaction efficiency toward many CX (X = N, S, O) couplings. The combination of advanced characterization techniques and first-principle simulations reveals that this enhanced reactivity is due to the formation of carbon vacancies that evolve into triazole and imine N species able to suitably bind Ni complexes and harness highly efficient dual catalysis. The cost-effective microwave treatment proposed here appears as a versatile and sustainable approach to the design of CN-based photocatalysts for a wide range of industrially relevant organic synthetic reactions.
Collapse
Affiliation(s)
- Miriam Marchi
- Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport "Giacomo Ciamician", INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste, 34127, Italy
| | - Edoardo Raciti
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons-UMONS, Mons, 7000, Belgium
| | - Sai Manoj Gali
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons-UMONS, Mons, 7000, Belgium
| | - Federica Piccirilli
- Elettra Sincrotrone Trieste, Strada Statale 14 km 163.5 in Area Science Park Basovizza, Trieste, 34149, Italy
| | - Hendrik Vondracek
- Elettra Sincrotrone Trieste, Strada Statale 14 km 163.5 in Area Science Park Basovizza, Trieste, 34149, Italy
| | - Arianna Actis
- Department of Chemistry and NIS Centre, University of Torino, Via Pietro Giuria 7, Torino, 10125, Italy
| | - Enrico Salvadori
- Department of Chemistry and NIS Centre, University of Torino, Via Pietro Giuria 7, Torino, 10125, Italy
| | - Cristian Rosso
- Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport "Giacomo Ciamician", INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste, 34127, Italy
| | - Alejandro Criado
- Centro Interdisciplinar de Química e Bioloxía-CICA, Universidade da Coruña, Rúa As Carballeiras, A Coruña, 15071, Spain
| | - Carmine D'Agostino
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Department of Civil, Chemical, Environmental and Material Engineering (DICAM), Alma Mater Studiorum, University of Bologna, Via Terracini, 28, Bologna, 40131, Italy
| | - Luke Forster
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Daniel Lee
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
| | - Alexandre C Foucher
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104-6272, USA
| | - Rajeev Kumar Rai
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104-6272, USA
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons-UMONS, Mons, 7000, Belgium
| | - Eric A Stach
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104-6272, USA
| | - Mario Chiesa
- Department of Chemistry and NIS Centre, University of Torino, Via Pietro Giuria 7, Torino, 10125, Italy
| | - Roberto Lazzaroni
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons-UMONS, Mons, 7000, Belgium
| | - Giacomo Filippini
- Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport "Giacomo Ciamician", INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste, 34127, Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport "Giacomo Ciamician", INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste, 34127, Italy
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramón 194, Donostia-San Sebastián, 20014, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| | - Michele Melchionna
- Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport "Giacomo Ciamician", INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste, 34127, Italy
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, Center for Energy, Environment and Transport "Giacomo Ciamician", INSTM UdR Trieste, University of Trieste, Via Licio Giorgieri 1, Trieste, 34127, Italy
- ICCOM-CNR, Unit of Trieste, via L. Giorgieri 1, Trieste, 34127, Italy
| |
Collapse
|
10
|
Anagnostopoulou M, Zindrou A, Cottineau T, Kafizas A, Marchal C, Deligiannakis Y, Keller V, Christoforidis KC. MOF-Derived Defective Co 3O 4 Nanosheets in Carbon Nitride Nanocomposites for CO 2 Photoreduction and H 2 Production. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6817-6830. [PMID: 36719032 DOI: 10.1021/acsami.2c19683] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In photocatalysis, especially in CO2 reduction and H2 production, the development of multicomponent nanomaterials provides great opportunities to tune many critical parameters toward increased activity. This work reports the development of tunable organic/inorganic heterojunctions comprised of cobalt oxides (Co3O4) of varying morphology and modified carbon nitride (CN), targeting on optimizing their response under UV-visible irradiation. MOF structures were used as precursors for the synthesis of Co3O4. A facile solvothermal approach allowed the development of ultrathin two-dimensional (2D) Co3O4 nanosheets (Co3O4-NS). The optimized CN and Co3O4 structures were coupled forming heterojunctions, and the content of each part was optimized. Activity was significantly improved in the nanocomposites bearing Co3O4-NS compared with the corresponding bulk Co3O4/CN composites. Transient absorption spectroscopy revealed a 100-fold increase in charge carrier lifetime on Co3O4-NS sites in the composite compared with the bare Co3O4-NS. The improved photocatalytic activity in H2 production and CO2 reduction is linked with (a) the larger interface imposed from the matching 2D structure of Co3O4-NS and the planar surface of CN, (b) improvements in charge carrier lifetime, and (c) the enhanced CO2 adsorption. The study highlights the importance of MOF structures used as precursors in forming advanced materials and the stepwise functionalization of the individual parts in nanocomposites for the development of materials with superior activity.
Collapse
Affiliation(s)
- Maria Anagnostopoulou
- Institut de Chimie et Procédés Pour l'Energie, l'Environnement et la Santé, (ICPEES) UMR7515 CNRS, ECPM, University of Strasbourg, 25 rue Becquerel Cedex 2, Strasbourg 67084, France
| | - Areti Zindrou
- Department of Physics, University of Ioannina, Ioannina 45110, Greece
| | - Thomas Cottineau
- Institut de Chimie et Procédés Pour l'Energie, l'Environnement et la Santé, (ICPEES) UMR7515 CNRS, ECPM, University of Strasbourg, 25 rue Becquerel Cedex 2, Strasbourg 67084, France
| | - Andreas Kafizas
- Department of Chemistry, Molecular Science Research Hub, Imperial College London, White City, London W12 0BZ, United Kingdon
| | - Clément Marchal
- Institut de Chimie et Procédés Pour l'Energie, l'Environnement et la Santé, (ICPEES) UMR7515 CNRS, ECPM, University of Strasbourg, 25 rue Becquerel Cedex 2, Strasbourg 67084, France
| | | | - Valérie Keller
- Institut de Chimie et Procédés Pour l'Energie, l'Environnement et la Santé, (ICPEES) UMR7515 CNRS, ECPM, University of Strasbourg, 25 rue Becquerel Cedex 2, Strasbourg 67084, France
| | - Konstantinos C Christoforidis
- Institut de Chimie et Procédés Pour l'Energie, l'Environnement et la Santé, (ICPEES) UMR7515 CNRS, ECPM, University of Strasbourg, 25 rue Becquerel Cedex 2, Strasbourg 67084, France
- Department of Environmental Engineering, Democritus University of Thrace, Xanthi 67100, Greece
| |
Collapse
|
11
|
Tian J, Zhao L, Yang C, Yang C, Guo L, Xia W. Four-Component Synthesis of Spiro-Imidazolidines Enabled by Carbon Nitride Photocatalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Jian Tian
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lulu Zhao
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Chuan Yang
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
12
|
Controlled photodeposition of Pt onto TiO2-g-C3N4 systems for photocatalytic hydrogen production. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.11.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|