1
|
Wang L, Guo F, Ren S, Gao RT, Wu L. Unbiased Photoelectrochemical H 2O 2 Coupled to H 2 Production via Dual Sb 2S 3-Based Photoelectrodes with Ultralow Onset Potential. Angew Chem Int Ed Engl 2024; 63:e202411305. [PMID: 39009482 DOI: 10.1002/anie.202411305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/17/2024]
Abstract
The productions of hydrogen peroxide (H2O2) and hydrogen (H2) in a photoelectrochemical (PEC) water splitting cell suffer from an onset potential that limits solar conversion efficiencies. Moreover, the formation of H2O2 through two-electron PEC water oxidation reaction competes with four-electron oxidation evolution reaction. Herein, we developed the surface selenium doped antimony trisulfide photoelectrode with the integrated ruthenium cocatalyst (Ru/Sb2(S,Se)3) to achieve the low onset potential and high Faraday efficiency (FE) for selective H2O2 production. The photoanode exhibits an outstanding average FE of 85 % in the potential range of 0.4-1.6 VRHE and the H2O2 yield of 1.01 μmol cm-2 min-1 at 1.6 VRHE, especially at low potentials of 0.1-0.55 VRHE with 80.4 % FE. Impressively, an unassisted PEC system that employs light and electrolyte was constructed to simultaneously produce H2O2 and H2 production on both the Ru/Sb2(S,Se)3 photoanode and the Pt/TiO2/Sb2S3 photocathode. The integrated system enables the average PEC H2O2 production rate of 0.637 μmol cm-2 min-1 without applying any addition bias. To our knowledge, this is the first demonstration that Sb2S3-based photoelectrodes exhibit H2O2/H2 two-side production with a strict key factor of the system, which represents its powerful platform to achieve high efficiency and productivity and the feasibility to facilitate value-added products in neutral conditions.
Collapse
Affiliation(s)
- Lei Wang
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Fei Guo
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Shijie Ren
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Rui-Ting Gao
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China
| | - Limin Wu
- College of Chemistry and Chemical Engineering, College of Energy Material and Chemistry, Inner Mongolia University, Hohhot, 010021, China
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| |
Collapse
|
2
|
Xue J, Chen Z, Dang K, Wu L, Ji H, Chen C, Zhang Y, Zhao J. The plasmonic effect of Cu on tuning CO 2 reduction activity and selectivity. Phys Chem Chem Phys 2024; 26:2915-2925. [PMID: 38186081 DOI: 10.1039/d3cp05450k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Copper (Cu) has been widely used for catalyzing the CO2 reduction reaction (CO2RR), but the plasmonic effect of Cu has rarely been explored for tuning the activity and selectivity of the CO2RR. Herein, we conducted a quantitative analysis on the plasmon-generated photopotential (Ehv) of a Cu nanowire array (NA) photocathode and found that Ehv exclusively reduced the apparent activation energy (Ea) of reducing CO2 to CO without affecting the competitive hydrogen evolution reaction (HER). As a result, the CO production rate was enhanced by 52.6% under plasmon excitation when compared with that under dark conditions. On further incorporation with a polycrystalline Si photovoltaic device, the Cu NA photocathode exhibits good stability in terms of photocurrent and syngas production (CO : H2 = 2 : 1) within 10 h. This work validates the crucial role of the plasmonic effect of Cu on modulating the activity and selectivity of the CO2RR.
Collapse
Affiliation(s)
- Jing Xue
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Zhenlin Chen
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kun Dang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Lei Wu
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hongwei Ji
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chuncheng Chen
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuchao Zhang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jincai Zhao
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
3
|
Zhan H, Zhou R, Wang P, Zhou Q. Selective hydroxyl generation for efficient pollutant degradation by electronic structure modulation at Fe sites. Proc Natl Acad Sci U S A 2023; 120:e2305378120. [PMID: 37339221 PMCID: PMC10293856 DOI: 10.1073/pnas.2305378120] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/09/2023] [Indexed: 06/22/2023] Open
Abstract
Hydrogen peroxide (H2O2) is an important green oxidant in the field of sewage treatment, and how to improve its activation efficiency and generate free radicals with stronger oxidation performance is a key issue in current research. Herein, we synthesized a Cu-doped α-Fe2O3 catalyst (7% Cu-Fe2O3) for activation of H2O2 under visible light for degradation of organic pollutants. The introduction of a Cu dopant changed the d-band center of Fe closer to the Fermi level, which enhanced the adsorption and activation of the Fe site for H2O2, and the cleavage pathway of H2O2 changed from heterolytic cleavage to homolytic cleavage, thereby improving the selectivity of •OH generation. In addition, Cu doping also promoted the light absorption ability of α-Fe2O3 and the separation of hole-electron pairs, which enhanced its photocatalytic activities. Benefiting from the high selectivity of •OH, 7% Cu-Fe2O3 exhibited efficient degradation activities against ciprofloxacin, the degradation rate was 3.6 times as much as that of α-Fe2O3, and it had good degradation efficiency for a variety of organic pollutants.
Collapse
Affiliation(s)
- Haiyin Zhan
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin300350, China
| | - Ruiren Zhou
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX77843-2117
| | - Pengfei Wang
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin300350, China
- School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin300401, China
| | - Qixing Zhou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Carbon Neutrality Interdisciplinary Science Centre/College of Environmental Science and Engineering, Nankai University, Tianjin300350, China
| |
Collapse
|