1
|
Wu PX, Chen CX, Sun YQ, Zheng ST. A water-soluble mixed-valent {Mn 11} cluster embedded heteropolyoxoniobate with magnetic properties. Chem Commun (Camb) 2024; 60:8888-8891. [PMID: 39086271 DOI: 10.1039/d4cc02720e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
A rare all-inorganic high-nuclearity mixed-valent {Mn11} cluster embedded polyoxoniobate, K25H43{(Te4Nb9O33)3(Nb6O19)5(TeVINb5O14)[(TeIVO3)2(MnII7MnIII4O19)]}·97H2O (1), has been synthesized by a one-pot reaction. Compound 1 contains the largest manganese cluster {Mn11} core among polyoxoniobates reported to date. {Mn11} consists of three quasi-cubane {Mn3O4} units and is simultaneously encapsulated by lacunary α-Keggin {Te4Nb9O36} and Lindqvist {Nb6O19} units. Compound 1 exhibits significant magnetic anisotropy and excellent water solubility and stability. The findings suggest a new, all-inorganic polynulear Mn-based structural paradigm for aqueous solution chemistry and magnetic materials.
Collapse
Affiliation(s)
- Ping-Xin Wu
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Chun-Xia Chen
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Yan-Qiong Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Shou-Tian Zheng
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
2
|
Fan JA, Yu H, Lin YD, Qi MQ, Kong XJ, Sun C, Zheng ST. An organophosphate 3d-4f heterometallic polyoxoniobate nanowire. NANOSCALE 2024; 16:12420-12423. [PMID: 38888289 DOI: 10.1039/d4nr01619j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Four different structural compositions of organophosphate, 3d transition metal, 4f lanthanide and polyoxoniobate (PONb) are unified in a system for the first time to form a new type of organophosphate 3d-4f heterometallic inorganic-organic hybrid PONb nanowire. Interesting magnetic anisotropy and slow magnetic relaxation are found in the PONb nanowire.
Collapse
Affiliation(s)
- Jin-Ai Fan
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Hao Yu
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Yu-Diao Lin
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
- Fujian Provincial Key Laboratory of Coastal Basin Environment, Fujian Polytechnic Normal University, Fuqing, Fujian 350300, China
| | - Ming-Qiang Qi
- State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiang-Jian Kong
- State Key Laboratory of Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Cai Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Shou-Tian Zheng
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
3
|
Wu PX, Han Y, Lin YJ, Sun YQ, Zheng ST. A 3D heteropolyoxoniobate framework based on heart-shaped {Te 2Nb 19O 60} clusters with proton conductivity property. Dalton Trans 2024; 53:7424-7429. [PMID: 38591126 DOI: 10.1039/d4dt00386a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
A 3D tellurium-substituted heteropolyoxoniobate framework H5K3Na[Cu(en)2]2[Cu(en)0.75(H2O)2.5]{[(Te2Nb19O58)(μ3-OH)2]}·24H2O (1, en = ethylenediamine) with a 6-connected pcu topology is built from heart-shaped {Te2Nb19O60} clusters and copper complexes. The {Te2Nb19O60} cluster represents the new tellurniobate structure type with a 19-nuclearity Nb cluster. It consists of two new monovacant Lindqvist {Nb5O19} clusters, one boat-shaped {Nb9O32} cluster and two TeO32- anions. The {Te2Nb19O60} polyanions are interlinked by [Cu(en)2]2+ complexes into a 2D (4, 4) grid-like layer containing rhombic sheets. The Cu2+ supports the adjacent layers through Te-O-Cu-O-Te- bonds to form a three-dimensional heteropolyoxoniobate framework with 1D channels. This compound exhibits good chemical and solvent stability and proton conductivity, with a conductivity of 7.9 × 10-3 S cm-1 at 85 °C under 98% RH.
Collapse
Affiliation(s)
- Ping-Xin Wu
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Yue Han
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Yu-Jin Lin
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Yan-Qiong Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Shou-Tian Zheng
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350108, China.
| |
Collapse
|
4
|
Hu Q, Li Y, Cao H, Ji L, Wu J, Zhong M. Light-driven thermocatalytic CO 2 reduction by CH 4 on alumina-cluster-modified Ni nanoparticles with excellent durability and high light-to-fuel efficiency promoted by the photoactivation effect. J Colloid Interface Sci 2024; 657:942-952. [PMID: 38096777 DOI: 10.1016/j.jcis.2023.12.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/01/2023] [Accepted: 12/06/2023] [Indexed: 01/02/2024]
Abstract
Using inexhaustible solar energy to drive efficient light-driven thermocatalytic CO2 reduction by CH4 (DRM) is an attractive approach that can synchronously reduce the greenhouse effect and convert solar energy into fuels. However, it is often limited by the intense light intensity required to produce high fuel production rates, and the catalyst deactivation due to severe carbon deposition generated from side reactions. Herein, a nanostructure of alumina-cluster-modified Ni nanoparticles supported on Al2O3 nanorods (ACM-Ni/Al2O3) was synthesized, displaying good catalytic performance under focused UV-vis-IR illumination. By light-driven thermocatalytic DRM on ACM-Ni/Al2O3 at a reduced light intensity of 76.9 kW m-2, the high fuel production rates of H2 (rH2, 65.7 mmol g-1 min-1) and CO (rCO, 78.8 mmol g-1 min-1), as well as an efficient light-to-fuel efficiency (η, 26.3 %) are achieved without additional heating. The rH2 and rCO of light-driven thermocatalysis are 2.9 and 1.9 times higher, respectively, compared to conventional thermocatalysis at the same temperature. We have discovered that high light-driven thermocatalytic activity originates from the photoactivation effect, significantly reducing the apparent activation energy and facilitating C* oxidation as a decisive step in DRM. ACM-Ni/Al2O3 possesses excellent durability and exhibits an extremely low coking rate of 4.40 × 10-3 gc gcatalyst-1 h-1, which is 26.8 times lower than that of the reference sample without Al2O3 cluster modification (R-Ni/Al2O3). This is owing to a decrease in activation energies (Ea) of C* oxidation and an increase in Ea of C* polymerization by the surface modification of Ni nanoparticles with Al2O3 clusters, effectively inhibiting carbon deposition.
Collapse
Affiliation(s)
- Qianqian Hu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| | - Yuanzhi Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China.
| | - Huamin Cao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| | - Lei Ji
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| | - Jichun Wu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| | - Mengqi Zhong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, 122 Luoshi Road, Wuhan 430070, PR China
| |
Collapse
|
5
|
Wang YJ, Yu L, Li XX, Sun YQ, Zheng ST. Two Unprecedented Germanoniobate Frameworks Based on High-Nuclearity Peanut-Shaped {Ge 12Nb 38} Clusters. Inorg Chem 2024; 63:1388-1394. [PMID: 38166363 DOI: 10.1021/acs.inorgchem.3c03905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
By variation of the amount of GeO2, two organic-inorganic hybrid germanoniobate frameworks with 6-connected pcu and 10-connected bct topologies were constructed from peanut-shaped {α-Ge12Nb38} and {β-Ge12Nb38} clusters, respectively. The {α-Ge12Nb38} and {β-Ge12Nb38} clusters contain the most Ge centers of germanoniobates reported so far. The compounds exhibit proton conduction properties with a conductivity of 3.04 × 10-4 S·cm-3 for 1 and 1.62 × 10-4 S·cm-3 for 2 at 85 °C and 98% RH. The water vapor adsorption capacities for 1 and 2 are 5.86 and 4.40 mmol·g-1, respectively.
Collapse
Affiliation(s)
- Yong-Jiang Wang
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Lan Yu
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Xin-Xiong Li
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Yan-Qiong Sun
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| | - Shou-Tian Zheng
- Fujian Provincial Key Laboratory of Advanced Inorganic Oxygenated-Materials, College of Chemistry, Fuzhou University, Fuzhou 350108, Fujian, China
| |
Collapse
|
6
|
Li XX, Li CH, Hou MJ, Zhu B, Chen WC, Sun CY, Yuan Y, Guan W, Qin C, Shao KZ, Wang XL, Su ZM. Ce-mediated molecular tailoring on gigantic polyoxometalate {Mo 132} into half-closed {Ce 11Mo 96} for high proton conduction. Nat Commun 2023; 14:5025. [PMID: 37596263 PMCID: PMC10439156 DOI: 10.1038/s41467-023-40685-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 07/31/2023] [Indexed: 08/20/2023] Open
Abstract
Precise synthesis of polyoxometalates (POMs) is important for the fundamental understanding of the relationship between the structure and function of each building motif. However, it is a great challenge to realize the atomic-level tailoring of specific sites in POMs without altering the major framework. Herein, we report the case of Ce-mediated molecular tailoring on gigantic {Mo132}, which has a closed structural motif involving a never seen {Mo110} decamer. Such capped wheel {Mo132} undergoes a quasi-isomerism with known {Mo132} ball displaying different optical behaviors. Experiencing an 'Inner-On-Outer' binding process with the substituent of {Mo2} reactive sites in {Mo132}, the site-specific Ce ions drive the dissociation of {Mo2*} clipping sites and finally give rise to a predictable half-closed product {Ce11Mo96}. By virtue of the tailor-made open cavity, the {Ce11Mo96} achieves high proton conduction, nearly two orders of magnitude than that of {Mo132}. This work offers a significant step toward the controllable assembly of POM clusters through a Ce-mediated molecular tailoring process for desirable properties.
Collapse
Affiliation(s)
- Xue-Xin Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
| | - Cai-Hong Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
| | - Ming-Jun Hou
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
| | - Bo Zhu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
| | - Wei-Chao Chen
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China.
| | - Chun-Yi Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
| | - Ye Yuan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
| | - Wei Guan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
| | - Chao Qin
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
| | - Kui-Zhan Shao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
| | - Xin-Long Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China.
| | - Zhong-Min Su
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Ren Min Street, No. 5268, Changchun, Jilin, 130024, P.R. China
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130021, P.R. China
| |
Collapse
|
7
|
Kumar Tiwari C, Roy S, Tubul-Sterin T, Baranov M, Leffler N, Li M, Yin P, Neyman A, Weinstock IA. Emergence of Visible-Light Water Oxidation Upon Hexaniobate-Ligand Entrapment of Quantum-Confined Copper-Oxide Cores. Angew Chem Int Ed Engl 2023; 62:e202213762. [PMID: 36580402 DOI: 10.1002/anie.202213762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/30/2022]
Abstract
The formation of small 1 to 3 nm organic-ligand free metal-oxide nanocrystals (NCs) is essential to utilization of their attractive size-dependent properties in electronic devices and catalysis. We now report that hexaniobate cluster-anions, [Nb6 O19 ]8- , can arrest the growth of metal-oxide NCs and stabilize them as water-soluble complexes. This is exemplified by formation of hexaniobate-complexed 2.4-nm monoclinic-phase CuO NCs (1), whose ca. 350 Cu-atom cores feature quantum-confinement effects that impart an unprecedented ability to catalyze visible-light water oxidation with no added photosensitizers or applied potentials, and at rates exceeding those of hematite NCs. The findings point to polyoxoniobate-ligand entrapment as a potentially general method for harnessing the size-dependent properties of very small semiconductor NCs as the cores of versatile, entirely-inorganic complexes.
Collapse
Affiliation(s)
- Chandan Kumar Tiwari
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Shubasis Roy
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Tal Tubul-Sterin
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Mark Baranov
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Nitai Leffler
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Mu Li
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Panchao Yin
- South China Advanced Institute for Soft Matter Science and Technology & State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Alevtina Neyman
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Ira A Weinstock
- Department of Chemistry and the Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| |
Collapse
|