1
|
Shan C, Hou X, Han R, Jia Q, Hou N, Wang Y, Liu C, Liu Q. Recent Advances of Gaseous Pollutant Catalytic Oxidation over Precious Metal Catalysts with SO 2 Exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 39884963 DOI: 10.1021/acs.est.4c13228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
Precious metal catalysts are widely used for catalytic oxidation of various gaseous pollutants (CO, methane, and VOCs) due to their excellent catalytic activity. However, they are easily affected by SO2 and deactivated in actual industrial waste gas or motor vehicle exhaust. Therefore, this review systematically summarizes the representative studies of gaseous pollutant catalytic oxidation over precious metal catalysts with SO2 exposure. First, the sulfur influence mechanisms, including sulfur poisoning and sulfur promotion, as well as the influence of reaction conditions, were discussed to analyze the interaction between SO2 and catalysts and its impact on catalyst properties. Based on the sulfur poisoning process, we further summarized the design strategies of sulfur-resistant catalysts: suppressing the adsorption of SO2 and promoting its desorption, inhibiting the formation of sulfates and facilitating their decomposition, and constructing sacrificial sites, which can be achieved by corresponding design methods: constructing a core-shell/confined structure, dopant modification, and adjusting structural and textural properties. Furthermore, we analyzed feasible catalyst regeneration methods, including N2/O2 atmosphere regeneration, reducing atmosphere-assisted regeneration, and washing regeneration. Finally, the challenges and prospects of the research were proposed, hoping to provide new perspectives on understanding sulfur poisoning processes and guide the design and regeneration of sulfur-resistant catalysts.
Collapse
Affiliation(s)
- Cangpeng Shan
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Xinyu Hou
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Rui Han
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Qinwei Jia
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Ning Hou
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Yunchong Wang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Caixia Liu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Qingling Liu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| |
Collapse
|
2
|
He D, Li Y, Liu Y, Chen Y, Zhao M, Wang J, Chen Y. Optimizing cooperative catalysis of multiple defective interfaces in Pt/mullite catalysts for NO oxidation. J Colloid Interface Sci 2025; 678:1064-1076. [PMID: 39341138 DOI: 10.1016/j.jcis.2024.09.169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/03/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Nitric oxide (NO) oxidation is an integral part of the nitrogen chemical cycle, but competitive activation of NO/O2 over single platinum (Pt)-based catalysts result in inadequate low temperature performance. Here, we constructed catalysts with BiMn2O5/CeO2 and Pt/BiMn2O5 defective interfaces (sufficient activation of NO/O2). The constructed catalyst achieved 95 % NO conversion at 260 °C in NO/O2 atmosphere, superior to most known catalysts. Even after aging (800 °C for 16 h), the NO conversion was up to 76 %. Further, the catalyst can be applied to actual diesel exhaust. Detailed oxygen vacancies (Ov) characterization reveals that BiMn2O5/CeO2 defective interface created by Ce3+-Ov + Mn4+-O ↔ Ce4+-O + Mn3+-Ov promote the activation of NO (on Mn3+ sites) and O2 (on Mn3+-Ov sites). Besides, the Ov on Pt/BiMn2O5 defective interface compensate for the loss of Pt sites ensuring hydrothermal stability. And this construction of multiple defective interfaces develops a pathway for boosting catalytic reactions.
Collapse
Affiliation(s)
- Darong He
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yan Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yaxin Liu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China
| | - Yunfeng Chen
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China
| | - Ming Zhao
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China; Center of Engineering of Vehicular Exhaust Gases Abatement, Chengdu 610064, Sichuan, China; Center of Engineering of Environmental Catalytic Material, Chengdu 610064, Sichuan, China.
| | - Jianli Wang
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China; Center of Engineering of Vehicular Exhaust Gases Abatement, Chengdu 610064, Sichuan, China; Center of Engineering of Environmental Catalytic Material, Chengdu 610064, Sichuan, China.
| | - Yaoqiang Chen
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, Sichuan, China; Center of Engineering of Vehicular Exhaust Gases Abatement, Chengdu 610064, Sichuan, China; Center of Engineering of Environmental Catalytic Material, Chengdu 610064, Sichuan, China; Institute of New Energy and Low-Carbon Technology, Chengdu 610064, Sichuan, China
| |
Collapse
|
3
|
Guo W, Zhao G, Huang Z, Luo Z, Zheng X, Gao M, Liu Y, Pan H, Sun W. Strong Metal-Support Interaction Triggered by Molten Salts. Angew Chem Int Ed Engl 2025; 64:e202414516. [PMID: 39196817 DOI: 10.1002/anie.202414516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 08/30/2024]
Abstract
Strong metal-support interaction (SMSI) plays a vital role in tuning the geometric and electronic structures of metal species. Generally, a high-temperature treatment (>500 °C) in reducing atmosphere is required for constructing SMSI, which may induce the sintering of metal species. Herein, we use molten salts as the reaction media to trigger the formation of high-intensity SMSI at reduced temperatures. The strong ionic polarization of the molten salt promotes the breakage of Ti-O bonds in the TiO2 support, and hence decreases the energy barrier for the formation of interfacial bonds. Consequently, a high-intensity SMSI state is achieved in TiO2 supported Ir nanoclusters, evidenced by a large number of Ir-Ti bonds at the interface, at a low temperature of 350 °C. Moreover, this method is applicable for triggering SMSI in various supported metal catalysts with different oxide supports including CeO2 and SnO2. This newly developed SMSI construction methodology opens a new avenue and holds significant potential for engineering advanced supported metal catalysts toward a broad range of applications.
Collapse
Affiliation(s)
- Wei Guo
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Guoqiang Zhao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, P. R. China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Zixiang Huang
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Zhouxin Luo
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xusheng Zheng
- National Synchrotron Radiation Laboratory (NSRL), University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Mingxia Gao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yongfeng Liu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Hongge Pan
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, P. R. China
| | - Wenping Sun
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310058, P. R. China
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
4
|
Zou J, Wu S, Lin Y, Li X, Niu Q, He S, Yang C. Electron Delocalization Disentangles Activity-Selectivity Trade-Off of Transition Metal Phosphide Catalysts in Oxidative Desulfurization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14895-14905. [PMID: 39115177 DOI: 10.1021/acs.est.4c03869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Breaking the activity-selectivity trade-off has been a long-standing challenge in catalysis. Here, we proposed a nanoheterostructure engineering strategy to overcome the trade-off in metal phosphide catalysts for the oxidative desulfurization (ODS) of fuels. Experimental and theoretical results demonstrated that electron delocalization was the key driver to simultaneously achieve high activity and high selectivity for the molybdenum phosphide (MoP)/tungsten phosphide (WP) nanoheterostructure catalyst. The electron delocalization not only promoted the catalytic pathway transition from predominant radicals to singlet oxygens in H2O2 activation but also simultaneously optimized the adsorption of reactants and intermediates on Mo and W sites. The presence of such dual-enhanced active sites ideally compensated for the loss of activity due to the nonradical catalytic pathway, consequently disentangling the activity-selectivity trade-off. The resulting catalyst (MoWP2/C) unprecedentedly achieved 100% removal of thiophenic compounds from real diesel at an initial concentration of 2676 ppm of sulfur with a high turnover frequency (TOF) of 105.4 h-1 and a minimal O/S ratio of 4. This work provides fundamental insight into the structure-activity-selectivity relationships of heterogeneous catalysts and may inspire the development of high-performance catalysts for ODS and other catalytic fields.
Collapse
Affiliation(s)
- Juncong Zou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Shaohua Wu
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Xiang Li
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Qiuya Niu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shanying He
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
- School of Environmental Science and Engineering, Hainan University, Haikou, Hainan 570228, China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| |
Collapse
|
5
|
Zhang T, Zheng P, Gao J, Liu X, Ji Y, Tian J, Zou Y, Sun Z, Hu Q, Chen G, Chen W, Liu X, Zhong Z, Xu G, Zhu T, Su F. Simultaneously activating molecular oxygen and surface lattice oxygen on Pt/TiO 2 for low-temperature CO oxidation. Nat Commun 2024; 15:6827. [PMID: 39122681 PMCID: PMC11316131 DOI: 10.1038/s41467-024-50790-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
Developing high-performance Pt-based catalysts with low Pt loading is crucial but challenging for CO oxidation at temperatures below 100 °C. Herein, we report a Pt-based catalyst with only a 0.15 wt% Pt loading, which consists of Pt-Ti intermetallic single-atom alloy (ISAA) and Pt nanoparticles (NP) co-supported on a defective TiO2 support, achieving a record high turnover frequency of 11.59 s-1 at 80 °C and complete conversion of CO at 120 °C. This is because the coexistence of Pt-Ti ISAA and Pt NP significantly alleviates the competitive adsorption of CO and O2, enhancing the activation of O2. Furthermore, Pt single atom sites are stabilized by Pt-Ti ISAA, resulting in distortion of the TiO2 lattice within Pt-Ti ISAA. This distortion activates the neighboring surface lattice oxygen, allowing for the simultaneous occurrence of the Mars-van Krevelen and Langmuir-Hinshelwood reaction paths at low temperatures.
Collapse
Affiliation(s)
- Tengfei Zhang
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Peng Zheng
- Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, China
| | - Jiajian Gao
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Jurong Island, Singapore
| | - Xiaolong Liu
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.
| | - Yongjun Ji
- School of Light Industry, Beijing Technology and Business University, Beijing, China.
| | - Junbo Tian
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yang Zou
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Zhiyi Sun
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
| | - Qiao Hu
- School of Chemistry and Chemical Engineering, in situ Center for Physical Sciences, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Guokang Chen
- School of Chemistry and Chemical Engineering, in situ Center for Physical Sciences, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Wenxing Chen
- Energy & Catalysis Center, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China.
| | - Xi Liu
- School of Chemistry and Chemical Engineering, in situ Center for Physical Sciences, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
| | - Ziyi Zhong
- Department of Chemical Engineering, and Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion (MATEC), Guangdong Technion Israel Institute of Technology (GTIIT), Shantou, China
| | - Guangwen Xu
- Key Laboratory on Resources Chemicals and Materials of Ministry of Education, Shenyang University of Chemical Technology, Shenyang, China
- Institute of Industrial Chemistry and Energy Technology, Shenyang University of Chemical Technology, Shenyang, China
| | - Tingyu Zhu
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.
| | - Fabing Su
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China.
- Institute of Industrial Chemistry and Energy Technology, Shenyang University of Chemical Technology, Shenyang, China.
| |
Collapse
|
6
|
Oda A, Kimura Y, Ichino K, Yamamoto Y, Kumagai J, Lee G, Sawabe K, Satsuma A. Rutile TiO 2-Supported Pt Nanoparticle Catalysts for the Low-Temperature Oxidation of Ethane to Ethanol. J Am Chem Soc 2024; 146:20122-20132. [PMID: 38985988 DOI: 10.1021/jacs.4c04381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Structure-function relationships of supported metal nanoparticle catalysts in the CO-assisted oxidation of ethane to ethanol were investigated. A rutile TiO2-supported Pt nanoparticle catalyst exhibited the highest ethanol production rate and selectivity. During the reaction, sequential changes in the geometric/electronic states and the particle size of the Pt nanoparticles were observed. The comparison of the catalytic performances of model catalysts with controlled metal-support interactions revealed that Pt0 nanoparticles of 2-3 nm with a high fraction of the surface Ptδ+ species are highly active for the oxidation of ethane to ethanol. The coadded CO plays a pivotal role not only in tuning the oxidation state of the surface Pt but also in producing H2O2, which is the true oxidant for the reaction. The supported Pt nanoparticle uses in situ-generated H2O2 to activate ethane, where the C2H5OOH intermediate is formed through a nonradical mechanism and subsequently converted to C2H5OH. This reaction occurs even at 50 °C with an apparent activation energy of 32 kJ mol-1. The present study sheds light on the usefulness of surface-engineered Pt nanoparticles for the low-temperature oxidation of ethane to ethanol.
Collapse
Affiliation(s)
- Akira Oda
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Yuya Kimura
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Koyo Ichino
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Yuta Yamamoto
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan
| | - Jun Kumagai
- Institute of Materials and Systems for Sustainability, Nagoya University, Nagoya 464-8603, Japan
| | - Gunik Lee
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Kyoichi Sawabe
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Atsushi Satsuma
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
7
|
Yin H, Wu B, Ma X, Su G, Han M, Lin H, Liu X, Li H, Zeng J. CO-Assisted Methane Oxidation into Oxygenates over Surface Platinum-Titanium Alloyed Layers. NANO LETTERS 2024. [PMID: 38511842 DOI: 10.1021/acs.nanolett.4c00786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Methane oxidation using molecular oxygen remains a grand challenge in which the obstacle is not only the activation of methane but also the reaction with oxygen, considering the mismatch of the ground spin states. Herein, we report TiO2-supported Pt nanocrystals (Pt/TiO2) with surface Pt-Ti alloyed layers that directly convert methane into oxygenates by using O2 as the oxidant with the assistance of CO. The oxygenate yield reached 749.8 mmol gPt-1 in a H2O aqueous solution over 0.1% Pt/TiO2 under 31 bar of mixed gas (20:5:6 CH4:CO:O2) at 150 °C for 3 h, while the CH3OH selectivity was 62.3%. On the basis of the control experiments and spectroscopic results, we identified the surface Pt-Ti alloy as the active sites. Moreover, CO promoted the dissociation of O2 on the surface of Pt-Ti alloyed layers and the subsequent activation of CH4 to form oxygenated products.
Collapse
Affiliation(s)
- Haibin Yin
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Bo Wu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xinlong Ma
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Guangning Su
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Mei Han
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hongfei Lin
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xinglong Liu
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hongliang Li
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jie Zeng
- Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Strongly-Coupled Quantum Matter Physics, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China
| |
Collapse
|
8
|
Tang X, Yu A, Yang Q, Yuan H, Wang Z, Xie J, Zhou L, Guo Y, Ma D, Dai S. Significance of Epitaxial Growth of PtO 2 on Rutile TiO 2 for Pt/TiO 2 Catalysts. J Am Chem Soc 2024; 146:3764-3772. [PMID: 38304977 DOI: 10.1021/jacs.3c10659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
TiO2-supported Pt species have been widely applied in numerous critical reactions involving photo-, thermo-, and electrochemical-catalysis for decades. Manipulation of the state of the Pt species in Pt/TiO2 catalysts is crucial for fine-tuning their catalytic performance. Here, we report an interesting discovery showing the epitaxial growth of PtO2 atomic layers on rutile TiO2, potentially allowing control of the states of active Pt species in Pt/TiO2 catalysts. The presence of PtO2 atomic layers could modulate the geometric configuration and electronic state of the Pt species under reduction conditions, resulting in a spread of the particle shape and obtaining a Pt/PtO2/TiO2 structure with more positive valence of Pt species. As a result, such a catalyst exhibits exceptional electrocatalytic activity and stability toward hydrogen evolution reaction, while also promoting the thermocatalytic CO oxidation, surpassing the performance of the Pt/TiO2 catalyst with no epitaxial structure. This novel epitaxial growth of the PtO2 structure on rutile TiO2 in Pt/TiO2 catalysts shows its potential in the rational design of highly active and economical catalysts toward diverse catalytic reactions.
Collapse
Affiliation(s)
- Xuan Tang
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Anwen Yu
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Qianqian Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Haiyang Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Zhaohua Wang
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Junzhong Xie
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Lihui Zhou
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yun Guo
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Research Institute of Industrial Catalysis, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Ding Ma
- Beijing National Laboratory for Molecular Sciences, New Cornerstone Science Laboratory, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
| | - Sheng Dai
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
9
|
Zou J, Wu S, Lin Y, He S, Niu Q, Li X, Yang C. Electronic Phosphide-Support Interactions in Carbon-Supported Molybdenum Phosphide Catalysts Derived from Metal-Organic Frameworks. NANO LETTERS 2023. [PMID: 37971262 DOI: 10.1021/acs.nanolett.3c03217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Interfacial interaction in carbon-supported catalysts can offer geometric, electronic, and compositional effects that can be utilized to regulate catalytically active sites, while this is far from being systematically investigated in carbon-supported phosphide catalysts. Here, we proposed a novel concept of electronic phosphide-support interaction (EPSI), which was confirmed by using molybdenum phosphide (MoP) supported on nitrogen-phosphorus codoped carbon (NPC) as a model catalyst (MoP@NPC). Such a strong EPSI could not only stabilize MoP in a low-oxidation state under environmental conditions but also regulate its electronic structure, leading to reduced dissociation energy of the oxygen-containing intermediates and enhancing the catalytic activity for oxidative desulfurization. The removal of dibenzothiophene over the MoP@NPC was as high as 100% with a turnover frequency (TOF) value of 0.0027 s-1, which was 33 times higher than that of MoP without EPSI. This work will open new avenues for the development of high-performance supported phosphide catalysts.
Collapse
Affiliation(s)
- Juncong Zou
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Shaohua Wu
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shanying He
- College of Environmental Science and Engineering, Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, Zhejiang Gongshang University, Hangzhou, Zhejiang 310012, China
| | - Qiuya Niu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Xiang Li
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
- School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China
| |
Collapse
|