1
|
Xiao C, Tian J, Jiang F, Yuan D, Chen Q, Hong M. Optimizing Iodine Enrichment through Induced-Fit Transformations in a Flexible Ag(I)-Organic Framework: From Accelerated Adsorption Kinetics to Record-High Storage Density. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311181. [PMID: 38361209 DOI: 10.1002/smll.202311181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/24/2024] [Indexed: 02/17/2024]
Abstract
Efficient capture and storage of radioactive I2 is a prerequisite for developing nuclear power but remains a challenge. Here, two flexible Ag-MOFs (FJI-H39 and 40) with similar active sites but different pore sizes and flexibility are prepared; both of them can capture I2 with excellent removal efficiencies and high adsorption capacities. Due to the more flexible pores, FJI-H39 not only possesses the record-high I2 storage density among all the reported MOFs but also displays a very fast adsorption kinetic (124 times faster than FJI-H40), while their desorption kinetics are comparable. Mechanistic studies show that FJI-H39 can undergo induced-fit transformations continuously (first contraction then expansion), making the adsorbed iodine species enrich near the Ag(I) nodes quickly and orderly, from discrete I- anion to the dense packing of various iodine species, achieving the very fast adsorption kinetic and the record-high storage density simultaneously. However, no significant structural transformations caused by the adsorbed iodine are observed in FJI-H40. In addition, FJI-H39 has excellent stability/recyclability/obtainability, making it a practical adsorbent for radioactive I2. This work provides a useful method for synthesizing practical radioactive I2 adsorbents.
Collapse
Affiliation(s)
- Cao Xiao
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jindou Tian
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Feilong Jiang
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Daqiang Yuan
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Qihui Chen
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Maochun Hong
- State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| |
Collapse
|
2
|
Li Q, Yu Z, Redshaw C, Xiao X, Tao Z. Double-cavity cucurbiturils: synthesis, structures, properties, and applications. Chem Soc Rev 2024; 53:3536-3560. [PMID: 38414424 DOI: 10.1039/d3cs00961k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Double-cavity Q[n]s are relatively new members of the Q[n] family and have garnered significant interest due to their distinctive structures and novel properties. While they incorporate n glycoluril units, akin to their single-cavity counterparts, their geometry can best be described as resembling a figure-of-eight or a handcuff, distinguishing them from single-cavity Q[n]s. Despite retaining the core molecular recognition traits of single-cavity Q[n]s, these double-cavity variants introduce fascinating new attributes rooted in their distinct configurations. This overview delves into the synthesis, structural attributes, properties, and intriguing applications of double-cavity Q[n]s. Some of the applications explored include their role in supramolecular polymers, molecular machinery, supra-amphiphiles, sensors, artificial light-harvesting systems, and adsorptive separation materials. Upon concluding this review, we discuss potential challenges and avenues for future development and offer valuable insights for other scholars working in this area with the aim of stimulating further exploration and interest.
Collapse
Affiliation(s)
- Qing Li
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, P. R. China.
| | - Zhengwei Yu
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, P. R. China.
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Hull HU6 7RX, UK
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, P. R. China.
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Institute of Applied Chemistry, Guizhou University, Guiyang 550025, P. R. China.
| |
Collapse
|
3
|
Lu Y, Yu Z, Zhang T, Pan D, Dai J, Li Q, Tao Z, Xiao X. A Cucurbit[8]uril-Based Supramolecular Framework Material for Reversible Iodine Capture in the Vapor Phase and Solution. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308175. [PMID: 38032163 DOI: 10.1002/smll.202308175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/04/2023] [Indexed: 12/01/2023]
Abstract
The safe and efficient management of hazardous radioactive iodine is significant for nuclear waste reprocessing and environmental industries. A novel supramolecular framework compound based on cucurbit[8]uril (Q[8]) and 4-aminopyridine (4-AP) is reported in this paper. In the single crystal structure of Q[8]-(4-AP), two 4-AP molecules interact with the outer surface of Q[8] and the two other 4-AP molecules are encapsulated into the Q[8] cavity to form the self-assembly Q[8]-(4-AP). Iodine adsorption experiments show that the as-prepared Q[8]-(4-AP) not only has a high adsorption capacity (1.74 g· g-1) for iodine vapor but also can remove the iodine in the organic solvent and the aqueous solution with the removal efficiencies of 95% and 91%, respectively. The presence of a large number of hydrogen bonds between the iodine molecule and the absorbent, as seen in the single crystal structure of iodine-loaded Q[8]-(4-AP) (I2@Q[8]-(4-AP)), is thought to be responsible for the exceptional iodine adsorption capacity of the material. In addition, the adsorption-desorption tests reveal that the self-assembly material has no significant loss of iodine capture capacity after five cycles, indicating that it has sufficient reusability.
Collapse
Affiliation(s)
- Yun Lu
- National Key Laboratory of Green Pesticide, State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Zhichao Yu
- National Key Laboratory of Green Pesticide, State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Tingting Zhang
- National Key Laboratory of Green Pesticide, State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Dingwu Pan
- National Key Laboratory of Green Pesticide, State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Jingjing Dai
- National Key Laboratory of Green Pesticide, State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Qing Li
- National Key Laboratory of Green Pesticide, State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Zhu Tao
- National Key Laboratory of Green Pesticide, State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| | - Xin Xiao
- National Key Laboratory of Green Pesticide, State Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
4
|
Wu B, Li ZW, Lin F, Tang R, Zhang W, Liu H, Ouyang G, Tan Y. The paradigm for exceptional iodine capture by nonporous amorphous electron-deficient cyclophanes. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133449. [PMID: 38218036 DOI: 10.1016/j.jhazmat.2024.133449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/23/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024]
Abstract
Nuclear power emerges as a beacon of hope in tackling the energy crisis. However, the emission of radioactive iodine originating from nuclear waste and accidents poses a serious danger to nature and human well-being. Therefore, it becomes imperative to urgently develop suitable adsorbents capable of iodine capture and long-term storage. It's generally recognized that achieving high iodine capture efficiency necessitates the presence of electron-rich pores/cavities that facilitate charge-transfer (CT) interactions, as well as effective sorption sites capable of engaging in lone pair interactions with iodine. In this study, an unprecedented iodine capture paradigm by nonporous amorphous electron-deficient tetracationic cycloalkanes in vapor and aqueous solutions is revealed, overturning preconceived notions of iodine trapping materials. A newly reported tetracationic cyclophane, BPy-Box4+, exhibited an exceptional iodine vapor sorption capacity of 3.99 g g-1, remarkable iodine removal efficiency in aqueous media, and outstanding reusability. The iodine capture mechanism is unambiguously elucidated by theoretical calculations and the single-crystal structures of cyclophanes with a gradual increase in iodine content, underlining the vital role of host-guest (1:1 or 1:2) interactions for the enhanced iodine capture. The current study demonstrates a new paradigm for enhanced iodine capture by nonporous amorphous electron-deficient cyclophanes through host-guest complexation.
Collapse
Affiliation(s)
- Baoqi Wu
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China
| | - Zhi-Wei Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Feng Lin
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China
| | - Rongzhi Tang
- School of Energy and Environment, City University of Hong Kong, Kowloon 999077, Hong Kong, China; Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China.
| | - Wanqing Zhang
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China
| | - Hongwei Liu
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China
| | - Gangfeng Ouyang
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China; School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yu Tan
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China.
| |
Collapse
|
5
|
Zhang L, Luo YT, Fan JQ, Xiao SJ, Zheng QQ, Liu XL, Tan QG, Sun C, Shi Q, Liang RP, Qiu JD. Efficient capture of iodine in steam and water media by hydrogen bond-driven charge transfer complexes. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133488. [PMID: 38219593 DOI: 10.1016/j.jhazmat.2024.133488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Untreated radioactive iodine (129I and 131I) released from nuclear power plants poses a significant threat to humans and the environment, so the development of materials to capture iodine from water media and steam is critical. Here, we report a charge transfer complex (TCNQ-MA CTC) with abundant nitrogen atoms and π-conjugated system for adsorption of I2 vapor and I3- from aqueous solutions. Due to the synergistic binding mechanism of benzene/triazine rings and N-containing groups with iodine, special I-π and charge transfer interaction can be formed between the guest and the host, and thus efficient removal of I2 and I3- can be realized by TCNQ-MA CTC with the adsorption capacity up to 2.42 g/g and 800 mg/g, respectively. TCNQ-MA CTC can capture 92% of I3- within 2.5 min, showing extremely fast kinetics, excellent selectivity and high affinity (Kd = 5.68 × 106 mL/g). Finally, the TCNQ-MA CTC was successfully applied in the removal of iodine from seawater with the efficiency of 93.71%. This work provides new insights in the construction of charge transfer complexes and lays the foundation for its environmental applications.
Collapse
Affiliation(s)
- Li Zhang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Yu-Ting Luo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Jia-Qi Fan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Sai-Jin Xiao
- State Key Laboratory of Nuclear Resources and Environment, East China University of Technology (ECUT), Nanchang 330013, China
| | - Qiong-Qing Zheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Xiao-Lin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Quan-Gen Tan
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Chen Sun
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Qiang Shi
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Ru-Ping Liang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Jian-Ding Qiu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, China; State Key Laboratory of Nuclear Resources and Environment, East China University of Technology (ECUT), Nanchang 330013, China.
| |
Collapse
|
6
|
Liu F, Kriat A, Rosas R, Bergé-Lefranc D, Gigmes D, Pascal S, Siri O, Liu S, Kermagoret A, Bardelang D. Controlled oligomeric guest stacking by cucurbiturils in water. Org Biomol Chem 2023; 21:9433-9442. [PMID: 37991010 DOI: 10.1039/d3ob01723k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Previously, we reported a guest molecule containing a viologen (V), a phenylene (P) and an imidazole (I) fragment (VPI) forming a host : guest 2 : 2 complex with cucurbit[8]uril (CB[8]) and an unprecedented 2 : 3 complex with cucurbit[10]uril (CB[10]). To better address the structural features required to form these complexes, two VPI analogues were designed and synthesized: the first with a tolyl (T) group grafted on the V part (T-VPI) and the second with a naphthalene (N) fused on the imidazole (I) part (VPI-N). While VPI-N afforded a discrete well-defined 2 : 2 complex with CB[8] and a 2 : 3 complex with CB[10], T-VPI organized also as a 2 : 2 complex with CB[8] but no well-defined complex was obtained with CB[10]. These complexes were studied by NMR spectroscopy, notably DOSY, which allowed us to estimate binding constants for 2 : 2 complex formation with CB[8], pointing to more stable 2 : 2 complexes with more hydrophobic guests. UV-vis and fluorescence spectroscopy confirmed complex formation, suggesting host-stabilized charge-transfer interactions. Therefore, the simple addition of CB[8] or CB[10] enabled us to control the level of guest stacking (dimer or trimer) using relevant pairs of synthetic hosts through spontaneous host : guest quaternary or quinary self-assembly.
Collapse
Affiliation(s)
- Fengbo Liu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China.
| | - Amine Kriat
- Aix Marseille Univ, CNRS, ICR, AMUTech, Marseille, France.
| | - Roselyne Rosas
- Aix Marseille Univ, CNRS, FSCM, Spectropole, Marseille, France
| | | | - Didier Gigmes
- Aix Marseille Univ, CNRS, ICR, AMUTech, Marseille, France.
| | - Simon Pascal
- Aix Marseille Univ, CNRS, CINAM, AMUTech, Marseille, France.
| | - Olivier Siri
- Aix Marseille Univ, CNRS, CINAM, AMUTech, Marseille, France.
| | - Simin Liu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, People's Republic of China.
| | | | | |
Collapse
|
7
|
Pedrini A, Marchetti D, Pinalli R, Massera C. Stimuli-Responsive, Dynamic Supramolecular Organic Frameworks. Chempluschem 2023; 88:e202300383. [PMID: 37675865 DOI: 10.1002/cplu.202300383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/08/2023]
Abstract
Supramolecular organic frameworks (SOFs) are a class of three-dimensional, potentially porous materials obtained by the self-assembly of organic building blocks held together by weak interactions such as hydrogen bonds, halogen bonds, π⋅⋅⋅π stacking and dispersion forces. SOFs are being extensively studied for their potential applications in gas storage and separation, catalysis, guest encapsulation and sensing. The supramolecular forces that guide their self-assembly endow them with an attractive combination of crystallinity and flexibility, providing intelligent dynamic materials that can respond to external stimuli in a reversible way. The present review article will focus on SOFs showing dynamic behaviour when exposed to different stimuli, highlighting fundamental aspects such as the combination of tectons and supramolecular interactions involved in the framework formation, structure-property relationship and their potential applications.
Collapse
Affiliation(s)
- Alessandro Pedrini
- Department of Chemistry, Life Sciences and Environmental Sustainability and INSTM UdR Parma, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Danilo Marchetti
- Department of Chemistry, Life Sciences and Environmental Sustainability and INSTM UdR Parma, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
- Center for Materials Interfaces, Electron Crystallography, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
| | - Roberta Pinalli
- Department of Chemistry, Life Sciences and Environmental Sustainability and INSTM UdR Parma, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Chiara Massera
- Department of Chemistry, Life Sciences and Environmental Sustainability and INSTM UdR Parma, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|
8
|
Maji S, Natarajan R. A Halogen-Bonded Organic Framework (XOF) Emissive Cocrystal for Acid Vapor and Explosive Sensing, and Iodine Capture. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302902. [PMID: 37394720 DOI: 10.1002/smll.202302902] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/19/2023] [Indexed: 07/04/2023]
Abstract
There is a strong and urgent need for efficient materials that can capture radioactive iodine atoms from nuclear waste. This work presents a novel strategy to develop porous materials for iodine capture by employing halogen bonding, mechanochemistry and crystal engineering. 3D halogen-bonded organic frameworks (XOFs) with guest-accessible permanent pores are exciting targets in crystal engineering for developing functional materials, and this work reports the first example of such a structure. The new-found XOF, namely TIEPE-DABCO, exhibits enhanced emission in the solid state and turn-off emission sensing of acid vapors and explosives like picric acid in nanomolar quantity. TIEPE-DABCO captures iodine from the gas phase (3.23 g g-1 at 75 °C and 1.40 g g-1 at rt), organic solvents (2.1 g g-1 ), and aqueous solutions (1.8 g g-1 in the pH range of 3-8); the latter with fast kinetics. The captured iodine can be retained for more than 7 days without any leaching, but readily released using methanol, when required. TIEPE-DABCO can be recycled for iodine capture several times without any loss of storage capacity. The results presented in this work demonstrate the potential of mechanochemical cocrystal engineering with halogen bonding as an approach to develop porous materials for iodine capture and sensing.
Collapse
Affiliation(s)
- Suman Maji
- Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ramalingam Natarajan
- Organic and Medicinal Chemistry, CSIR-Indian Institute of Chemical Biology, 4 Raja S C Mullick Road, Kolkata, 700032, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
9
|
Yang J, Hu SJ, Cai LX, Zhou LP, Sun QF. Counteranion-mediated efficient iodine capture in a hexacationic imidazolium organic cage enabled by multiple non-covalent interactions. Nat Commun 2023; 14:6082. [PMID: 37770481 PMCID: PMC10539326 DOI: 10.1038/s41467-023-41866-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 09/22/2023] [Indexed: 09/30/2023] Open
Abstract
Developing efficient adsorbents to capture radioactive iodine produced from nuclear wastes is highly desired. Here we report the facial synthesis of a hexacationic imidazolium organic cage and its iodine adsorption properties. Crucial role of counteranions has been disclosed for iodine capture with this cage, where distinct iodine capture behaviors were observed when different counteranions were used. Mechanistic investigations, especially with the X-ray crystallographic analysis of the iodine-loaded sample, allowed the direct visualization of the iodine binding modes at the molecular level. A network of multiple non-covalent interactions including hydrogen bonds, halogen bonds, anion···π interactions, electrostatic interaction between polyiodides and the hexacationic skeleton of the cage are found responsible for the observed high iodine capture performance. Our results may provide an alternative strategy to design efficient iodine adsorbents.
Collapse
Affiliation(s)
- Jian Yang
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, 350002, PR China
| | - Shao-Jun Hu
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, 350002, PR China
| | - Li-Xuan Cai
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, 350002, PR China
| | - Li-Peng Zhou
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, 350002, PR China
| | - Qing-Fu Sun
- State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences, Fuzhou, 350002, PR China.
- University of Chinese Academy of Sciences, Beijing, 100049, PR China.
| |
Collapse
|
10
|
Kurisingal JF, Yun H, Hong CS. Porous organic materials for iodine adsorption. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131835. [PMID: 37348374 DOI: 10.1016/j.jhazmat.2023.131835] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/23/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023]
Abstract
The nuclear industry will continue to develop rapidly and produce energy in the foreseeable future; however, it presents unique challenges regarding the disposal of released waste radionuclides because of their volatility and long half-life. The release of radioactive isotopes of iodine from uranium fission reactions is a challenge. Although various adsorbents have been explored for the uptake of iodine, there is still interest in novel adsorbents. The novel adsorbents should be synthesized using reliable and economically feasible synthetic procedures. Herein, we discussed the state-of-the-art performance of various categories of porous organic materials including covalent organic frameworks, covalent triazine frameworks, porous aromatic frameworks, porous organic cages, among other porous organic polymers for the uptake of iodine. This review discussed the synthesis of porous organic materials and their iodine adsorption capacity and reusability. Finally, the challenges and prospects for iodine capture using porous organic materials are highlighted.
Collapse
Affiliation(s)
| | - Hongryeol Yun
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea
| | - Chang Seop Hong
- Department of Chemistry, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
11
|
Zhou W, Li A, Zhou M, Xu Y, Zhang Y, He Q. Nonporous amorphous superadsorbents for highly effective and selective adsorption of iodine in water. Nat Commun 2023; 14:5388. [PMID: 37666841 PMCID: PMC10477329 DOI: 10.1038/s41467-023-41056-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/22/2023] [Indexed: 09/06/2023] Open
Abstract
Adsorbents widely utilized for environmental remediation, water purification, and gas storage have been usually reported to be either porous or crystalline materials. In this contribution, we report the synthesis of two covalent organic superphane cages, that are utilized as the nonporous amorphous superadsorbents for aqueous iodine adsorption with the record-breaking iodine adsorption capability and selectivity. In the static adsorption system, the cages exhibit iodine uptake capacity of up to 8.41 g g-1 in I2 aqueous solution and 9.01 g g-1 in I3- (KI/I2) aqueous solution, respectively, even in the presence of a large excess of competing anions. In the dynamic flow-through experiment, the aqueous iodine adsorption capability for I2 and I3- can reach up to 3.59 and 5.79 g g-1, respectively. Moreover, these two superphane cages are able to remove trace iodine in aqueous media from ppm level (5.0 ppm) down to ppb level concentration (as low as 11 ppb). Based on a binding-induced adsorption mechanism, such nonporous amorphous molecular materials prove superior to all existing porous adsorbents. This study can open up a new avenue for development of state-of-the-art adsorption materials for practical uses with conceptionally new nonporous amorphous superadsorbents (NAS).
Collapse
Affiliation(s)
- Wei Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Aimin Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Min Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Yiyao Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Yi Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Qing He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
| |
Collapse
|