1
|
Loumissi T, Ishii R, Hara K, Oyumi T, Abe I, Li C, Zhang H, Hirayama R, Niki K, Itoi T, Izumi Y. Exchange of CO 2 with CO as Reactant Switches Selectivity in Photoreduction on Co-ZrO 2 from C 1-3 Paraffin to Small Olefins. Angew Chem Int Ed Engl 2024; 63:e202412090. [PMID: 39292412 PMCID: PMC11627130 DOI: 10.1002/anie.202412090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/02/2024] [Accepted: 09/18/2024] [Indexed: 09/19/2024]
Abstract
Photocatalytic reduction of CO2 into C2,3 hydrocarbons completes a C-neutral cycle. The reaction pathways of photocatalytic generation of C2,3 paraffin and C2H4 from CO2 are mostly unclear. Herein, a Co0-ZrO2 photocatalyst converted CO2 into C1-3 paraffin, while selectively converting CO into C2H4 and C3H6 (6.0±0.6 μmol h-1 gcat -1, 70 mol %) only under UV/Visible light. The photocatalytic cycle was conducted under 13CO and H2, with subsequent evacuation and flushing with CO. This iterative process led to an increase in the population of C2H4 and C3H6 up to 61-87 mol %, attributed to the accumulation of CH2 species at the interface between Co0 nanoparticles and the ZrO2 surface. CO2 adsorbed onto the O vacancies of the ZrO2 surface, with resulting COH species undergoing hydrogenation on the Co0 surface to yield C1-3 paraffin using either H2 or H2O (g, l) as the reductant. In contrast, CO adsorbed on the Co0 surface, converted to HCOH species, and then split into CH and OH species at the Co and O vacancy sites on ZrO2, respectively. This comprehensive study elucidates intricate photocatalytic pathways governing the transformation of CO2 into paraffin and CO to olefins.
Collapse
Affiliation(s)
- Tarik Loumissi
- Department of ChemistryGraduate School of ScienceChiba UniversityYayoi 1–33, Inage-kuChiba263-8522Japan
| | - Rento Ishii
- Department of ChemistryGraduate School of ScienceChiba UniversityYayoi 1–33, Inage-kuChiba263-8522Japan
| | - Keisuke Hara
- Department of ChemistryGraduate School of ScienceChiba UniversityYayoi 1–33, Inage-kuChiba263-8522Japan
| | - Tomoki Oyumi
- Department of ChemistryGraduate School of ScienceChiba UniversityYayoi 1–33, Inage-kuChiba263-8522Japan
| | - Ikki Abe
- Department of ChemistryGraduate School of ScienceChiba UniversityYayoi 1–33, Inage-kuChiba263-8522Japan
| | - Chongxu Li
- Department of ChemistryGraduate School of ScienceChiba UniversityYayoi 1–33, Inage-kuChiba263-8522Japan
| | - Hongwei Zhang
- Department of ChemistryGraduate School of ScienceChiba UniversityYayoi 1–33, Inage-kuChiba263-8522Japan
| | - Rumiko Hirayama
- Department of ChemistryGraduate School of ScienceChiba UniversityYayoi 1–33, Inage-kuChiba263-8522Japan
| | - Kaori Niki
- Department of ChemistryGraduate School of ScienceChiba UniversityYayoi 1–33, Inage-kuChiba263-8522Japan
| | - Takaomi Itoi
- Department of Mechanical EngineeringGraduate School of EngineeringChiba UniversityYayoi 1–33, Inage-kuChiba263-8522Japan
| | - Yasuo Izumi
- Department of ChemistryGraduate School of ScienceChiba UniversityYayoi 1–33, Inage-kuChiba263-8522Japan
| |
Collapse
|
2
|
Pan R, Wang Q, Zhao Y, Feng Z, Xu Y, Wang Z, Li Y, Zhang X, Zhang H, Liu J, Gu XK, Zhang J, Weng Y, Zhang J. Bioinspired catalytic pocket promotes CO 2-to-ethanol photoconversion on colloidal quantum wells. SCIENCE ADVANCES 2024; 10:eadq2791. [PMID: 39565844 PMCID: PMC11578185 DOI: 10.1126/sciadv.adq2791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/17/2024] [Indexed: 11/22/2024]
Abstract
Sluggish surface reaction is a critical factor that strongly governs the efficiency of photocatalytic solar fuel production, particularly in CO2-to-ethanol photoconversion. Here, inspired by the principles underlying enzyme catalytic proficiency and specificity, we report a biomimetic photocatalyst that affords superior CO2-to-ethanol photoreduction efficiency (5.5 millimoles gram-1 hour-1 in average with 98.2% selectivity) distinctly surpassing the state of the art. The key is to create a class of catalytic pocket, which contains spatially organized NH2…Cu-Se(-Zn) multiple functionalities at close range, over ZnSe colloidal quantum wells. Such structure offers a platform to mimic the concerted cooperation between the active site and surrounding secondary/outer coordination spheres in enzyme catalysis. This is manifested by the chemical adsorption and activation of CO2 via a bent geometry, favorable stabilization toward a variety of important intermediates, promotion of multielectron/proton transfer processes, etc. These results highlight the potential of incorporating enzyme-like features into the design of photocatalysts to overcome the challenges in CO2 reduction.
Collapse
Affiliation(s)
- Rongrong Pan
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing 100081, China
| | - Qi Wang
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Yan Zhao
- Science Center of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Zhendong Feng
- State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanjun Xu
- University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory of Soft Matter Physics, National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhuan Wang
- University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory of Soft Matter Physics, National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Yapeng Li
- Center of Advanced Nanocatalysis, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Xiuming Zhang
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing 100081, China
| | - Haoqing Zhang
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing 100081, China
| | - Jia Liu
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing 100081, China
| | - Xiang-Kui Gu
- School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, China
| | - Jiangwei Zhang
- Science Center of Energy Material and Chemistry, Inner Mongolia University, Hohhot 010021, China
| | - Yuxiang Weng
- University of Chinese Academy of Sciences, Beijing 100049, China
- Laboratory of Soft Matter Physics, National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiatao Zhang
- School of Materials Science and Engineering, School of Chemistry and Chemical Engineering, Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
3
|
Xu Y, Wang P, Zhan X, Dai W, Li Q, Zou J, Luo X. Enhancing the Lewis acidity of single atom Tb via introduction of boron to achieve efficient photothermal synergistic CO 2 cycloaddition. J Colloid Interface Sci 2024; 673:134-142. [PMID: 38875784 DOI: 10.1016/j.jcis.2024.06.090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/27/2024] [Accepted: 06/09/2024] [Indexed: 06/16/2024]
Abstract
Nowadays, it is becoming increasingly urgent to lower the escalating carbon dioxide (CO2) to reduce greenhouse effect. Fortunately, it is an ideal strategy by using the inexhaustible solar energy as the driving force to manipulate the cycloaddition reaction, the atomic efficiency of which is 100 %. This work represents the first attempt on utilization of rare-earth metal Tb with atomic dispersion, and the structure of Tb coordinated with 4 N-atoms and 2B-atoms was constructed on interconnected carbon hollow spheres. The introduction of electron-deficient B reduces the electron density of Tb, thereby boosting Lewis acidity and promoting the occurrence of ring-opening reaction. The mechanism exploration enunciates that TbN4B2/C is a photothermal synergistic catalyst, the combined action of photogenerated electrons and strong Lewis acidic site of Tb reduces the free energy of the rate-determining step, and then improving the yield of cyclic carbonate up to 739 mmol g-1h-1.
Collapse
Affiliation(s)
- Yong Xu
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Ping Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xiaojun Zhan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Weili Dai
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, PR China.
| | - Qing Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Jianping Zou
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse, Nanchang Hangkong University, Nanchang 330063, PR China; School of Life Science, Jinggangshan University, Ji'an 343009, PR China
| |
Collapse
|
4
|
Liu H, Sun B, Li Z, Xiao D, Wang Z, Liu Y, Zheng Z, Wang P, Dai Y, Cheng H, Huang B. Plasmon-Driven Highly Selective CO 2 Photoreduction to C 2H 4 on Ionic Liquid-Mediated Copper Nanowires. Angew Chem Int Ed Engl 2024; 63:e202410596. [PMID: 39031951 DOI: 10.1002/anie.202410596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/15/2024] [Accepted: 07/18/2024] [Indexed: 07/22/2024]
Abstract
Selective CO2 photoreduction to value-added multi-carbon (C2+) feedstocks, such as C2H4, holds great promise in direct solar-to-chemical conversion for a carbon-neutral future. Nevertheless, the performance is largely inhibited by the high energy barrier of C-C coupling process, thereby leading to C2+ products with low selectivity. Here we report that through facile surface immobilization of a 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIM-BF4) ionic liquid, plasmonic Cu nanowires could enable highly selective CO2 photoreduction to C2H4 product. At an optimal condition, the resultant plasmonic photocatalyst exhibits C2H4 production with selectivity up to 96.7 % under 450 nm monochromatic light irradiation, greatly surpassing its pristine Cu counterpart. Combined in situ spectroscopies and computational calculations unravel that the addition of EMIM-BF4 ionic liquid modulates the local electronic structure of Cu, resulting in its enhanced adsorption strength of *CO intermediate and significantly reduced energy barrier of C-C coupling process. This work paves new path for Cu surface plasmons in selective artificial photosynthesis to targeted products.
Collapse
Affiliation(s)
- Hongli Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Bin Sun
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zaiqi Li
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Difei Xiao
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zeyan Wang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Yuanyuan Liu
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zhaoke Zheng
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Peng Wang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Ying Dai
- School of Physics, Shandong University, Jinan, 250100, China
| | - Hefeng Cheng
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Baibiao Huang
- State Key Laboratory of Crystal Materials, Institute of Crystal Materials, Shandong University, Jinan, 250100, China
| |
Collapse
|
5
|
Guo D, Jiang S, Shen L, Pun EYB, Lin H. Heterogeneous CuS QDs/BiVO 4@Y 2O 2S Nanoreactor for Monitorable Photocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401335. [PMID: 38693088 DOI: 10.1002/smll.202401335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/29/2024] [Indexed: 05/03/2024]
Abstract
Exploration of multifunctional integrated catalysts is of great significance for photocatalysis toward practical application. Herein, a 1D confined nanoreactor with a heterogeneous core-shell structure is designed for synergies of efficient catalysis and temperature monitoring by custom encapsulation of Z-scheme heterojunction CuS quantum dots/BiVO4 (CuS QDs/BiVO4) and Y2O2S-Er, Yb. The dispersed active sites created by the QDs with high surface energy improve the mass transfer efficiency, and the efficient electron transport channels at the heterogeneous interface extend the carrier lifetime, which endows the nanoreactor with excellent catalytic performance. Meanwhile, real-time temperature monitoring is realized based on the thermally coupled levels 2H11/2/4S3/2→4I15/2 of Er3+ using fluorescence intensity ratio, which enables the monitorable photocatalysis. Furthermore, the nanoreactor with a multidimensional structure increases effective intermolecular collisions to facilitate the catalytic process by restricting the reaction within distinct enclosed spaces and circumvents potential unknown interaction effects. The design of multi-space nanoconfined reactors opens up a new avenue to modulate catalyst function, providing a unique perspective for photocatalytic applications in the mineralization of organic pollutants, hydrogen production, and nitrogen fixation.
Collapse
Affiliation(s)
- Da Guo
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Shuwen Jiang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
| | - Lifan Shen
- College of Microelectronics and Key Laboratory of Optoelectronics Technology, Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Edwin Yue Bun Pun
- Department of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Hai Lin
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, 116034, P. R. China
- Department of Electrical Engineering and State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
6
|
Shi H, Liang Y, Hou J, Wang H, Jia Z, Wu J, Song F, Yang H, Guo X. Boosting Solar-Driven CO 2 Conversion to Ethanol via Single-Atom Catalyst with Defected Low-Coordination Cu-N 2 Motif. Angew Chem Int Ed Engl 2024; 63:e202404884. [PMID: 38760322 DOI: 10.1002/anie.202404884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/01/2024] [Accepted: 05/15/2024] [Indexed: 05/19/2024]
Abstract
Cu-based catalysts have been shown to selectively catalyze CO2 photoreduction to C2+ solar fuels. However, they still suffer from poor activity and low selectivity. Herein, we report a high-performance carbon nitride supported Cu single-atom catalyst featuring defected low-coordination Cu-N2 motif (Cu-N2-V). Lead many recently reported photocatalysts and its Cu-N3 and Cu-N4 counterparts, Cu-N2-V exhibits superior photocatalytic activity for CO2 reduction to ethanol and delivers 69.8 μmol g-1 h-1 ethanol production rate, 97.8 % electron-based ethanol selectivity, and a yield of ~10 times higher than Cu-N3 and Cu-N4. Revealed by the extensive experimental investigation combined with DFT calculations, the superior photoactivity of Cu-N2-V stems from its defected Cu-N2 configuration, in which the Cu sites are electron enriched and enhance electron delocalization. Importantly, Cu in Cu-N2-V exist in both Cu+ and Cu2+ valence states, although predominantly as Cu+. The Cu+ sites support the CO2 activation, while the co-existence of Cu+/Cu2+ sites are highly conducive for strong *CO adsorption and subsequent *CO-*CO dimerization enabling C-C coupling. Furthermore, the hollow microstructure of the catalyst also promotes light adsorption and charge separation efficiency. Collectively, these make Cu-N2-V an effective and high-performance catalyst for the solar-driven CO2 conversion to ethanol. This study also elucidates the C-C coupling reaction path via *CO-*CO to *COCOH and rate-determining step, and reveals the valence state change of partial Cu species from Cu+ to Cu2+ in Cu-N2-V during CO2 photoreduction reaction.
Collapse
Affiliation(s)
- Hainan Shi
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
- School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, 116029, China
| | - Yan Liang
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
| | - Jungang Hou
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
| | - Haozhi Wang
- State Key Laboratory of Marine Resource Utilization in South China Sea, School of Materials Science and Engineering, Hainan University, Haikou, 570228, China
| | - Zhenghao Jia
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
- Division of Energy Research Resources, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, China
| | - Jiaming Wu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
| | - Fei Song
- Shanghai Synchrotron Radiation Faciality, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Hong Yang
- School of Engineering, The University of Western Australia, Perth, WA 6009, Australia
| | - Xinwen Guo
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, PSU-DUT Joint Center for Energy Research, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
7
|
Ren L, Yang X, Sun X, Wang Y, Li H, Yuan Y. Cascaded *CO-*COH Intermediates on a Nonmetallic Plasmonic Photocatalyst for CO 2-to-C 2H 6 with 90.6 % Selectivity. Angew Chem Int Ed Engl 2024; 63:e202404660. [PMID: 38714487 DOI: 10.1002/anie.202404660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 05/10/2024]
Abstract
Oxygen vacancies (OV) in nonmetallic plasmonic photocatalysts can decrease the energy barrier for CO2 reduction, boosting C1 intermediate production for potential C2 formation. However, their susceptibility to oxidation weakens C1 intermediate adsorption. Herein we proposed a "photoelectron injection" strategy to safeguard OV in W18O49 by creating a W18O49/ZIS (W/Z) plasmonic photocatalyst. Moreover, photoelectrons contribute to the local multi-electron environment of W18O49, enhancing the intrinsic excitation of its hot electrons with extended lifetimes, as confirmed by in situ XPS and femtosecond transient absorption analysis. Density functional theory calculations revealed that W/Z with OV enhances CO2 adsorption, activating *CO production, while reducing the energy barrier for *COH production (0.054 eV) and subsequent *CO-*COH coupling (0.574 eV). Successive hydrogenation revealed that the free energy for *CH2CH2 hydrogenation (0.108 eV) was lower than that for *CH2CH2 desorption for C2H4 production (0.277 eV), favouring C2H6 production. Consequently, W/Z achieves an efficient C2H6 activity of 653.6 μmol g-1 h-1 under visible light, with an exceptionally high selectivity of 90.6 %. This work offers a new strategy for the rational design of plasmonic photocatalysts with high selectivity for C2+ products.
Collapse
Affiliation(s)
- Liteng Ren
- School of Materials Science and Engineering, and the Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Xiaonan Yang
- School of Materials Science and Engineering, and the Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Xin Sun
- School of Chemistry and Chemical Engineering, and the Key Laboratory of Structure & Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Yuling Wang
- School of Materials Science and Engineering, and the Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| | - Huiquan Li
- School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang, 236037, P. R. China
| | - Yupeng Yuan
- School of Materials Science and Engineering, and the Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui University, Hefei, 230601, P. R. China
| |
Collapse
|
8
|
Li L, Xu D, Xu X, Tian Z, Zhou X, Yang S, Zhang Z. Modulation of active center distance of hybrid perovskite for boosting photocatalytic reduction of carbon dioxide to ethylene. Proc Natl Acad Sci U S A 2024; 121:e2318970121. [PMID: 38315838 PMCID: PMC10873559 DOI: 10.1073/pnas.2318970121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/22/2023] [Indexed: 02/07/2024] Open
Abstract
Solar-driven photocatalytic CO2 reduction is an energy-efficient and sustainable strategy to mitigate CO2 levels in the atmosphere. However, efficient and selective conversion of CO2 into multi-carbon products, like C2H4, remains a great challenge due to slow multi-electron-proton transfer and sluggish C-C coupling. Herein, a two-dimensional thin-layered hybrid perovskite is fabricated through filling of oxygen into iodine vacancy in pristine DMASnI3 (DMA = dimethylammonium). The rational-designed DMASnI3(O) induces shrinkage of active sites distance and facilitates dimerization of C-C coupling of intermediates. Upon simulated solar irradiation, the DMASnI3(O) photocatalyst achieves a high selectivity of 74.5%, corresponding to an impressive electron selectivity of 94.6%, for CO2 to C2H4 conversion and an effective C2H4 yield of 11.2 μmol g-1 h-1. In addition, the DMASnI3(O) inherits excellent water stability and implements long-term photocatalytic CO2 reduction to C2H4 in a water medium. This work establishes a unique paradigm to convert CO2 to C2+ hydrocarbons in a perovskite-based photocatalytic system.
Collapse
Affiliation(s)
- Linjuan Li
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai200062, China
| | - Dawei Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai200062, China
| | - Xiankui Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai200062, China
| | - Zheng Tian
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai200062, China
| | - Xue Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai200062, China
| | - Shenbo Yang
- Hongzhiwei Technology (Shanghai) Co. Ltd., Shanghai200240, China
| | - Zhonghai Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai200062, China
- State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), Sinopec Research Institute of Petroleum Processing Co., Ltd., Beijing100083, China
- State Key Laboratory of Petroleum Molecular and Process Engineering (SKLPMPE), East China Normal University, Shanghai200062, China
| |
Collapse
|
9
|
Li D, Zhang H, Xie S, Zhang H, Wang H, Ma X, Gao D, Qi J, You F. Lattice Distortion in a Confined Structured ZnS/ZnO Heterojunction for Efficient Photocatalytic CO 2 Reduction. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37478204 DOI: 10.1021/acsami.3c06889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
It is a promising strategy to effectively promote "carbon neutrality" by reducing CO2 to small energy molecules through photocatalysis technology. However, due to low light utilization and recombination of photogenerated carriers, photocatalysts usually have low activity and low selectivity for products. Herein, a hollow spherical ZnS/ZnO heterojunction with a spatial confinement effect photocatalyst was synthesized toward CO2 photoreduction through preciously controlling the nano-/microstructure. The local lattice distortions were introduced into the surface of the hollow ZnS/ZnO microsphere, which activated lattice oxygen and provided additional active reaction sites. Furthermore, the heterojunction constructed between ZnS and ZnO interfaces facilitated the separation of photoinduced charge carriers. Combined with the natural advantage of enhanced light capture and absorption for a hollow confined structure, as a result, the systemic design in the electronic and confined structures for the photocatalyst has brought an excellent CO2 reduction performance with a CO yield rate as high as 35.85 μmol g-1h-1 and durability under a 300 W Xe lamp irradiation without any sacrificial agent and cocatalyst.
Collapse
Affiliation(s)
- Danyang Li
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Hongpeng Zhang
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Songze Xie
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Hao Zhang
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Huan Wang
- Hebei Key Laboratory of Flexible Functionals Materials, School of Materials Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050000, PR China
| | - Xiaohong Ma
- State Key Laboratory of Multi-phase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Dawei Gao
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| | - Jian Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Feifei You
- College of Textile and Clothing, Yancheng Institute of Technology, Yancheng 224051, P. R. China
| |
Collapse
|
10
|
Yan K, Wu D, Wang T, Chen C, Liu S, Hu Y, Gao C, Chen H, Li B. Highly Selective Ethylene Production from Solar-Driven CO 2 Reduction on the Bi 2S 3@In 2S 3 Catalyst with In–S V–Bi Active Sites. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Ke Yan
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang310018, P. R. China
| | - Donghai Wu
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou, Henan450006, P. R. China
| | - Ting Wang
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang310018, P. R. China
| | - Cong Chen
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang310018, P. R. China
| | - Shoujie Liu
- Guangdong Laboratory of Chemistry and Fine Chemical Engineering, Shantou, Guangdong515063, P. R. China
| | - Yangguang Hu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui230026, P. R. China
| | - Chao Gao
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui230026, P. R. China
| | - Houyang Chen
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing400714, P. R. China
- Chongqing College, University of Chinese Academy of Sciences, Chongqing400714, P. R. China
| | - Benxia Li
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou, Zhejiang310018, P. R. China
| |
Collapse
|