Guo Y, Bai L. Dissipative Particle Dynamics Simulation for the Self-Assembly of Symmetric Pentablock Terpolymers Melts under 1D Confinements.
Polymers (Basel) 2023;
15:3982. [PMID:
37836033 PMCID:
PMC10575399 DOI:
10.3390/polym15193982]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 10/15/2023] Open
Abstract
The phase behavior of CBABC pentablock terpolymers confined in thin films is investigated using the Dissipative Particle Dynamic method. Phase diagrams are constructed and used to reveal how chain length (i-block length), block composition and wall selectivity influence the self-assembly structures. Under neutral walls, four categories of morphologies, i.e., perpendicular lamellae, core-shell types of microstructures, complex networks, and half-domain morphologies, are identified with the change in i-block length. Ordered structures are more common at weak polymer-polymer interaction strengths. For polymers of a consistent chain length, when one of the three components has a relatively smaller length, the morphologies transition is sensitive to block composition. With selective walls, parallel lamellae structures are prevalent. Wall selectivity also impacts chain conformations. While a large portion of chains form loop conformations under A-selective walls, more chains adopt bridge conformation when the wall prefers C-blocks. These findings offer insights for designing nanopatterns using symmetric pentablock terpolymers.
Collapse