1
|
Zhao RC, Xie LH, Liu XM, Liu Z, Li XY, Li JR. Removal of Trace Benzene from Cyclohexane Using a MOF Molecular Sieve. J Am Chem Soc 2025; 147:2467-2475. [PMID: 39635903 DOI: 10.1021/jacs.4c13208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Cyclohexane (Cy), commonly produced by the catalytic hydrogenation of benzene (Bz), is used in large quantities as a solvent or feedstock for nylon polymers. Removing trace unreacted Bz from the Cy product is technically difficult due to their similar molecular structures and physical properties. Herein, we report that a metal-organic framework (MOF) adsorbent shows a molecular sieving effect for Bz and Cy with record-high Bz/Cy adsorption selectivities (216, 723, and 1027) in their liquid mixtures (v/v = 1:1, 1:10, and 1:20), and traps Bz molecules effectively even at low partial pressure in the vapor phase (e.g., 2.49 mmol/g at 8.2 Pa) or at low content in liquid-phase Cy (e.g., 128 mg/g at 20 ppm). Over 99% removal of trace Bz (1000 ppm) from liquid Cy could be achieved in one simple stripping step at room temperature using this sorbent, producing a Cy with >99.999% purity. Single-crystal structure analyses for guest-free and Bz-loaded phases of the MOF disclosed that a narrow slit-like pore aperture and the strong uniting of multiple weak host-guest and guest-guest interactions are the co-origin of its distinct adsorption property for Bz and Cy.
Collapse
Affiliation(s)
- Rui-Chao Zhao
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Lin-Hua Xie
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xiao-Min Liu
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Zhe Liu
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xiang-Yu Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Chemical Engineering, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
2
|
Wu S, Song X, Lu J, Hao W, Liu M. 2,3 : 6,7-Naphthalenediimide-Based Chiral Triangular Macrocycle: Self-Assembled Helix, Outer π-Surface Directed Co-Assembly and Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2025:e202421108. [PMID: 39743678 DOI: 10.1002/anie.202421108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/15/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Here, we report the synthesis and self-assembly of a novel chiral 2,3 : 6,7-naphthalenediimide-based triangular macrocycle (NDI-Δ) and its chiroptical properties. The enantiomeric NDI-Δ is synthesized by condensation of (RR) or (SS)-trans-1,2-cyclohexanediamine and 2,3,6,7-naphthalenetetracarboxylic 2,3 : 6,7-dianhydride, in which the chirality of the macrocycles is controlled by the diamine. With the rigid outer π-surface, the macrocycle exhibits unique chiroptical properties and self-assembly modes. The NDI-Δ shows circularly polarized luminescence (CPL) in solution and can self-assemble into helical structures with the inversion of CPL signal and the enhancement of |glum|. Moreover, the NDI-Δ has a tailored electron-deficient outer π-surface, which can co-assemble with an electron-rich anthracene (AN) to form an intermolecular charge transfer (CT) complex, generating a yellow-green CT-CPL. Crystal structure analysis confirms that AN is mounted on the outer surface of NDI-Δ through π-π stacking and C-H ⋯ ${\cdots }$ π interactions. This work provides a critical example for the self-assembly of macrocycles into helical structures and outer π-surface directed CT complexes formation, opening up a new clue for designing chiral macrocycle-based chiroptical materials.
Collapse
Affiliation(s)
- Shengfu Wu
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A, Yuquan Road, Beijing, 100049, China
| | - Xin Song
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
| | - Jie Lu
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
| | - Wenchao Hao
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A, Yuquan Road, Beijing, 100049, China
| | - Minghua Liu
- Beijing National Laboratory of Molecular Sciences and CAS Key Laboratory of Colloid, Interface and Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, North First Street 2, Zhongguancun, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.19(A, Yuquan Road, Beijing, 100049, China
| |
Collapse
|
3
|
Li L, Xiang F, Li Y, Yang Y, Yuan Z, Chen Y, Yuan F, He L, Xiang S, Chen B, Zhang Z. Optimizing Propylene/Propane Sieving Separation through Gate-Pressure Control within a Flexible Organic Framework. Angew Chem Int Ed Engl 2024:e202419047. [PMID: 39541150 DOI: 10.1002/anie.202419047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/16/2024]
Abstract
The separation of propylene (C3H6) and propane (C3H8) is of great significance in the chemical industry, which poses a challenge due to their almost identical kinetic diameters and similar physical properties. In this work, we synthesized an ultramicroporous flexible hydrogen-bonded organic framework (named HOF-FJU-106) by using molecule 2,3,6,7-tetra (4-cyanophenyl) tetrathiafulvalene (TTF-4CN). The formation of the dimer causes the TTF-4CN molecular to bend and weaken π-stacked interactions, coupled with the flexibility of C≡N ⋯ ${\cdots }$ H-C hydrogen bonds, which leads to reversible conversion between open and closed frameworks through the mutual slip of adjacent layers/columns under activation and stimulation of gas molecules. Through gas adsorption isotherms and adsorption enthalpy, HOF-FJU-106a exhibited adaptive adsorption and stronger binding affinity for C3H6, and presented a recorded gas uptake ratio of C3H6/C3H8 (23.77) among presentative HOF materials at room temperature to date. Importantly, the flexible HOF-FJU-106a shows an interesting phenomenon about the reversible gate pressure control under variable temperature, which realized the gas adsorption and separation performance enhancement for the binary C3H6/C3H8 mixtures. This strategy through designing HOFs with thermoregulatory gating effect is a powerful way to maximize the performance of materials.
Collapse
Affiliation(s)
- Lu Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University Fuzhou (China)
| | - Fahui Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University Fuzhou (China)
- Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Key Laboratory of Agro-Products Quality and Safety, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yunbin Li
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University Fuzhou (China)
| | - Yisi Yang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University Fuzhou (China)
| | - Zhen Yuan
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University Fuzhou (China)
| | - Yanting Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University Fuzhou (China)
| | - Furong Yuan
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University Fuzhou (China)
| | - Lei He
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University Fuzhou (China)
| | - Shengchang Xiang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University Fuzhou (China)
| | - Banglin Chen
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University Fuzhou (China)
| | - Zhangjing Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University Fuzhou (China)
| |
Collapse
|
4
|
Xia G, Zhou C, Xiao X, Yang Y, Yu F, Wang H. Self-correcting mismatches in metastable hydrogen-bonded organic frameworks with an 11-fold interpenetrated array. Chem Sci 2024:d4sc02751e. [PMID: 39156931 PMCID: PMC11325195 DOI: 10.1039/d4sc02751e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/05/2024] [Indexed: 08/20/2024] Open
Abstract
The polymorphic self-correction from a metastable phase to a stable one often occurs and plays crucial roles in synthesizing robust hydrogen-bonded organic frameworks (HOFs). However, identifying metastable phases and understanding the self-correcting mechanisms is a challenging venture due to their intrinsic instability. Here, we for the first time introduce 1,8-naphtholactam (Np) as a hydrogen-bonding synthon positioned on the periphery of a bicarbazole to create a versatile molecular unit for 3D HOFs. The as-synthesized NCU-HOF1, analyzed by single-crystal X-ray diffraction (SCXRD), is found to be metastable. It exhibits an 11-fold interpenetrated dia topology with a quarter of the Np units exhibiting monomeric N-H⋯O interactions between adjacent Np link sites, which readily self-correct upon desolvation to form fully dimeric ones. Consequently, the resultant NCU-HOF1a becomes highly robust in polar solvents, strong acid or alkaline aqueous solutions, and has permanent porosity with contracted cavities for selective adsorption and efficient "turn-up" fluorescent sensing of C2H4 gas. This work not only debuts a new hydrogen-bonding synthon but offers more insights into investigating solid-state dynamics in metastable HOFs.
Collapse
Affiliation(s)
- Guomin Xia
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry Nanchang 330031 China
- Institute for Advanced Study, Nanchang University Nanchang 330031 China
| | - Chunlei Zhou
- Institute for Advanced Study, Nanchang University Nanchang 330031 China
| | - Xingliang Xiao
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry Nanchang 330031 China
- Institute for Advanced Study, Nanchang University Nanchang 330031 China
| | - Yang Yang
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry Nanchang 330031 China
- Institute for Advanced Study, Nanchang University Nanchang 330031 China
| | - Fuqing Yu
- College of Chemistry and Chemical Engineering, Nanchang University Nanchang 330031 China
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry Nanchang 330031 China
| | - Hongming Wang
- College of Chemistry and Chemical Engineering, Nanchang University Nanchang 330031 China
- Jiangxi Provincial Key Laboratory of Functional Crystalline Materials Chemistry Nanchang 330031 China
- Institute for Advanced Study, Nanchang University Nanchang 330031 China
| |
Collapse
|
5
|
Li J, Chen B. Flexible hydrogen-bonded organic frameworks (HOFs): opportunities and challenges. Chem Sci 2024; 15:9874-9892. [PMID: 38966355 PMCID: PMC11220619 DOI: 10.1039/d4sc02628d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/20/2024] [Indexed: 07/06/2024] Open
Abstract
Flexible behavior is one of the most fascinating features of hydrogen-bonded organic frameworks (HOFs), which represent an emerging class of porous materials that are self-assembled via H-bonding between organic building units. Due to their unique flexibility, HOFs can undergo structural changes or transformations in response to various stimuli (physical or chemical). Taking advantage of this unique structural feature, flexible HOFs show potential in multifunctional applications such as gas storage/separation, molecular recognition, sensing, proton conductivity, biomedicine, etc. While some other flexible porous materials have been extensively studied, the dynamic behavior of HOFs remains relatively less explored. This perspective highlights the inherent flexible properties of HOFs, discusses their different flexible behaviors, including pore size/shape changes, interpenetration/stacking manner, H-bond breaking/reconstruction, and local dynamic behavior, and highlights their potential applications. We believe that this perspective will not only contribute to HOF chemistry and materials science, but will also facilitate the ongoing extensive research on dynamic porous materials.
Collapse
Affiliation(s)
- Jiantang Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University Jinhua 321004 P. R. China
| | - Banglin Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University Jinhua 321004 P. R. China
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Sciences, Fujian Normal University Fujian 350007 P. R. China
| |
Collapse
|
6
|
Fisher S, Malaspina LA, Gozálvez Martínez C, Prescimone A, Balmohammadi Y, Grabowsky S, Šolomek T. Leveraging Halogen Interactions for a Supramolecular Nanotube. Chemistry 2024; 30:e202400295. [PMID: 38462477 DOI: 10.1002/chem.202400295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
We demonstrate the formation of supramolecular nanotubes from molecular triangles in a single crystal by balancing the hydrogen bonds and halogen interactions between individual macrocycles. Thereby, we template the supramolecular nanotube growth by intermolecular interactions encoded directly in the macrocycles instead of those provided by the crystallization solvent. Ultimately, we show that replacing bromines for iodines in the macrocycle is necessary to achieve this supramolecular organization by enhancing the strength of the halogen interactions and concomitant reduction of the detrimental hydrogen bonds. We investigated the nature and the interplay of the individual intermolecular interactions by analysis of the experimental single crystal data and quantum chemical calculations. This work enriches the available toolbox of supramolecular interactions and will aid and abet the development of rationally-designed materials with a long-range 1D tubular organization.
Collapse
Affiliation(s)
- Sergey Fisher
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, NL-1098, XH Amsterdam, The Netherlands
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Lorraine A Malaspina
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | | | - Alessandro Prescimone
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, CH-4056, Basel, Switzerland
| | - Yaser Balmohammadi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Simon Grabowsky
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| | - Tomáš Šolomek
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, NL-1098, XH Amsterdam, The Netherlands
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012, Bern, Switzerland
| |
Collapse
|
7
|
Wang H, Wang D, Wu Y, Zhao Y. Macrocycle-Based Hierarchically Porous Hydrogen-Bonded Organic Frameworks. Chemistry 2024; 30:e202303618. [PMID: 38117667 DOI: 10.1002/chem.202303618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 12/22/2023]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are porous crystalline materials. The pores in HOFs are usually non-covalent extrinsic pores constructed through the formation of the framework. Supramolecular macrocycles with intrinsic pores in their structures are good candidates for constructing HOFs with intrinsic pores from the macrocycles themselves, thus leading to hierarchically porous structures. Combining the macrocycle and HOFs will endow these hierarchically porous materials with enhanced properties and special functionalities. This review summarizes recent advances in macrocycle-based HOFs, including the macrocycles used for constructing HOFs, the hierarchically porous structures of the HOFs, and the applications induced by the hierarchically HOFs porous structures. This review provides insights for future research on macrocycle-based hierarchically porous HOFs and the appropriate applications of the unique structures.
Collapse
Affiliation(s)
- Hui Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Road, 266042, Qingdao, China
- College of Chemical Engineering, Qingdao University of Science and Technology, Zhengzhou Road, 266042, Qingdao, China) Please change the image of the Frontispiece from the current image to the TOC image
| | - Danbo Wang
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Road, 266042, Qingdao, China
| | - Yumin Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Zhengzhou Road, 266042, Qingdao, China) Please change the image of the Frontispiece from the current image to the TOC image
| | - Yingjie Zhao
- College of Polymer Science and Engineering, Qingdao University of Science and Technology, Zhengzhou Road, 266042, Qingdao, China
| |
Collapse
|
8
|
Pedrini A, Marchetti D, Pinalli R, Massera C. Stimuli-Responsive, Dynamic Supramolecular Organic Frameworks. Chempluschem 2023; 88:e202300383. [PMID: 37675865 DOI: 10.1002/cplu.202300383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/08/2023]
Abstract
Supramolecular organic frameworks (SOFs) are a class of three-dimensional, potentially porous materials obtained by the self-assembly of organic building blocks held together by weak interactions such as hydrogen bonds, halogen bonds, π⋅⋅⋅π stacking and dispersion forces. SOFs are being extensively studied for their potential applications in gas storage and separation, catalysis, guest encapsulation and sensing. The supramolecular forces that guide their self-assembly endow them with an attractive combination of crystallinity and flexibility, providing intelligent dynamic materials that can respond to external stimuli in a reversible way. The present review article will focus on SOFs showing dynamic behaviour when exposed to different stimuli, highlighting fundamental aspects such as the combination of tectons and supramolecular interactions involved in the framework formation, structure-property relationship and their potential applications.
Collapse
Affiliation(s)
- Alessandro Pedrini
- Department of Chemistry, Life Sciences and Environmental Sustainability and INSTM UdR Parma, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Danilo Marchetti
- Department of Chemistry, Life Sciences and Environmental Sustainability and INSTM UdR Parma, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
- Center for Materials Interfaces, Electron Crystallography, Istituto Italiano di Tecnologia, Viale Rinaldo Piaggio 34, 56025, Pontedera, Italy
| | - Roberta Pinalli
- Department of Chemistry, Life Sciences and Environmental Sustainability and INSTM UdR Parma, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| | - Chiara Massera
- Department of Chemistry, Life Sciences and Environmental Sustainability and INSTM UdR Parma, University of Parma, Parco Area delle Scienze 17/A, 43124, Parma, Italy
| |
Collapse
|
9
|
Yan M, Wang Y, Chen J, Zhou J. Potential of nonporous adaptive crystals for hydrocarbon separation. Chem Soc Rev 2023; 52:6075-6119. [PMID: 37539712 DOI: 10.1039/d2cs00856d] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Hydrocarbon separation is an important process in the field of petrochemical industry, which provides a variety of raw materials for industrial production and a strong support for the development of national economy. However, traditional separation processes involve huge energy consumption. Adsorptive separation based on nonporous adaptive crystal (NAC) materials is considered as an attractive green alternative to traditional energy-intensive separation technologies due to its advantages of low energy consumption, high chemical and thermal stability, excellent selective adsorption and separation performance, and outstanding recyclability. Considering the exceptional potential of NAC materials for hydrocarbon separation, this review comprehensively summarizes recent advances in various supramolecular host-based NACs. Moreover, the current challenges and future directions are illustrated in detail. It is expected that this review will provide useful and timely references for researchers in this area. Based on a large number of state-of-the-art studies, the review will definitely advance the development of NAC materials for hydrocarbon separation and stimulate more interesting studies in related fields.
Collapse
Affiliation(s)
- Miaomiao Yan
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Yuhao Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Jingyu Chen
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| | - Jiong Zhou
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, P. R. China.
| |
Collapse
|
10
|
Thermally Crosslinked Hydrogen-Bonded Organic Framework Membranes for Highly Selective Ion Separation. Molecules 2023; 28:molecules28052173. [PMID: 36903421 PMCID: PMC10004400 DOI: 10.3390/molecules28052173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/19/2023] [Accepted: 02/24/2023] [Indexed: 03/02/2023] Open
Abstract
The weak bonding energy and flexibility of hydrogen bonds can hinder the long-term use of hydrogen-bonded organic framework (HOF) materials under harsh conditions. Here we invented a thermal-crosslinking method to form polymer materials based on a diamino triazine (DAT) HOF (FDU-HOF-1), containing high-density hydrogen bonding of N-H⋯N. With the increase of temperature to 648 K, the formation of -NH- bonds between neighboring HOF tectons by releasing NH3 was observed based on the disappearance of the characteristic peaks of amino groups on FDU-HOF-1 in the Fourier transform infrared (FTIR) and solid-state nuclear magnetic resonance (ss-NMR). The variable temperature PXRD indicated the formation of a new peak at 13.2° in addition to the preservation of the original diffraction peaks of FDU-HOF-1. The water adsorption, acid-base stability (12 M HCl to 20 M NaOH) and solubility experiments concluded that the thermally crosslinked HOFs (TC-HOFs) are highly stable. The membranes fabricated by TC-HOF demonstrate the permeation rate of K+ ions as high as 270 mmol m-2 h-1 as well as high selectivity of K+/Mg2+ (50) and Na+/Mg2+ (40), which was comparable to Nafion membranes. This study provides guidance for the future design of highly stable crystalline polymer materials based on HOFs.
Collapse
|