1
|
Peng X, Wang J, Deng Z, Wei J, Xie C, Wang Y, Han J, Chen Z, Du J, Zhang Z. NIR laser-activated phthalocyanine loaded lipid nanoparticles targeting M2 macrophage for improved photoacoustic imaging-guided photothermal therapy. Mater Today Bio 2024; 28:101209. [PMID: 39221205 PMCID: PMC11364919 DOI: 10.1016/j.mtbio.2024.101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/14/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024] Open
Abstract
The development of novel phototheranostic agents with significant potential in bioimaging-guided therapy is highly desirable for precise tumor therapy. Herein, NIR laser-activated ruthenium phthalocyanine (PcRu) loaded sub-30 nm targeting lipid nanoparticles (α-PcRu-NPs) were fabricated for photoacoustic imaging (PAI)-guided photothermal therapy (PTT). Due to the formation of J-type aggregation of PcRu in the core of the nanostructure, the α-PcRu-NPs exhibited high stability, efficient NIR absorption, reduced singlet oxygen generation, high photothermal activity, and intense photoacoustic signal. With the M2 macrophage target peptide (M2pep) modification and small size of α-PcRu-NPs, in vivo evaluations reveal that α-PcRu-NPs can specifically target and deeply penetrate the tumor foci. Under a high contrast PAI guidance with α-PcRu-NPs (744 nm, 0.35 μW), it also realizes superior photothermal therapy (PTT) for breast cancer under 670 nm laser irradiation (0.5 W/cm2). The prominent therapeutic efficacy of α-PcRu-NP-based PTT not only directly kills tumor cells, but also enhances the immune response by promoting dendritic cell maturation and increasing cytotoxic T cell infiltration. Thus, this work broadens the applications of phthalocyanine derivatives as phototheranostics in the PAI-guided PTT field.
Collapse
Affiliation(s)
- Xingzhou Peng
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Junjie Wang
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, Key Laboratory of Hainan Trauma and Disaster Rescue, The First Affiliated Hospital of Hainan Medical University, Engineering Research Center for Hainan Bio-Smart Materials and Bio-Medical Devices, Hainan Medical University, Haikou, 571199, China
| | - Zihan Deng
- Department of Thoracic Surgery, ZhongNan Hospital of Wuhan University, Wuhan, Hubei, 430074, China
| | - Jianshuang Wei
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| | - Changqiang Xie
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Yan Wang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Jianlei Han
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, Beijing, 100190, China
| | - Zhengyu Chen
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Jianghai Du
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
| | - Zhihong Zhang
- State Key Laboratory of Digital Medical Engineering, Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Sanya, Hainan, 572025, China
- Britton Chance Center and MoE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, China
| |
Collapse
|
2
|
Chakraborty D, Kaur N, Sahoo J, Hickey N, De M, Mukherjee PS. Host-Guest Interactions Induced Enhancement in Oxidase-Like Activity of a Benzothiadiazole Dye Inside an Aqueous Pd 8L 4 Barrel. J Am Chem Soc 2024; 146:24901-24910. [PMID: 39197147 DOI: 10.1021/jacs.4c05899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
The effect of host-guest interactions on the chemistry of encapsulated molecules is a fascinating field of research that has gained momentum in recent years. Much of the work in this field has been focused on the effect of such interactions on catalysis and photoluminescence of encapsulated dyes. However, the effect of such interactions on related photoinduced processes, such as photoregulated oxidase-mimicking activity, has not been explored much. Herein, we report a unique example of enhancement of oxidase-like activity of a benzothiadiazole dye (G1) in water through encapsulation within a M8L4 molecular barrel (1). Favorable host-guest interactions helped the encapsulated guest G1 to have better photoinduced electron transfer to molecular oxygen leading to increased production of superoxide radical anions and oxidase-like activity. Furthermore, encapsulation inside 1 also caused a change in the redox potentials of the guest (G1) which after photoinduced electron transfer produced a better oxidizing agent than free G1. These phenomena combined to enhance the oxidase-like activity of dye G1 upon encapsulation inside cage 1. The present report demonstrates a unique effect of host-guest chemistry on photoregulated processes.
Collapse
Affiliation(s)
- Debsena Chakraborty
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Navjot Kaur
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Jagabandhu Sahoo
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Neal Hickey
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste 34127, Italy
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
3
|
Rinshad V, Aggarwal M, Clegg JK, Mukherjee PS. Harnessing a Pd 4 Water-Soluble Molecular Capsule as a Size-Selective Catalyst for Targeted Oxidation of Alkyl Aromatics. JACS AU 2024; 4:3238-3247. [PMID: 39211591 PMCID: PMC11350579 DOI: 10.1021/jacsau.4c00539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Molecular hosts with functional cavities can emulate enzymatic behavior through selective encapsulation of substrates, resulting in high chemo-, regio-, and stereoselective product formation. It is still challenging to synthesize enzyme-mimicking hosts that exhibit a narrow substrate scope that relies upon the recognition of substrates based on the molecular size. Herein, we introduce a Pd4 self-assembled water-soluble molecular capsule [M 4 L 2] (MC) that was formed through the self-assembly of a ligand L (4',4‴'-(1,4-phenylene)bis(1',4'-dihydro-[4,2':6',4″-terpyridine]-3',5'-dicarbonitrile)) with the acceptor cis-[(en)Pd(NO3)2] [en = ethane-1,2-diamine] (M). The molecular capsule MC showed size-selective recognition towards xylene isomers. The redox property of MC was explored for efficient and selective oxidation of one of the alkyl groups of m-xylene and p-xylene to their corresponding toluic acids using molecular O2 as an oxidant upon photoirradiation. Employing host-guest chemistry, we demonstrate the homogeneous catalysis of alkyl aromatics to the corresponding monocarboxylic acids in water under mild conditions. Despite homogeneous catalysis, the products were separated from the reaction mixtures by simple filtration/extraction, and the catalyst was reused. The larger analogues of the alkyl aromatics failed to bind within the MC's hydrophobic cavity, resulting in a lower/negligible reaction outcome. The present study represents a facile approach for selective photo-oxidation of xylene isomers to their corresponding toluic acids in an aqueous medium under mild conditions.
Collapse
Affiliation(s)
- Valiyakath
Abdul Rinshad
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore 560012, India
| | - Medha Aggarwal
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore 560012, India
| | - Jack K. Clegg
- School
of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland 4072, Australia
| | - Partha Sarathi Mukherjee
- Department
of Inorganic and Physical Chemistry, Indian
Institute of Science, Bangalore 560012, India
| |
Collapse
|
4
|
Aggarwal M, Banerjee R, Hickey N, Mukherjee PS. Stimuli-Mediated Structural Interchange Between Pd 6 and Pd 12 Architectures: Selective Recognition of E-Stilbene by the Pd 6 Architecture and its Photoprotection. Angew Chem Int Ed Engl 2024:e202411513. [PMID: 39160692 DOI: 10.1002/anie.202411513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/05/2024] [Accepted: 08/19/2024] [Indexed: 08/21/2024]
Abstract
The dynamic behaviour of metal-ligand bonding cultivates stimuli-mediated structural transformations in self-assembled molecular architectures. The propensity of synthetically designed self-assembled systems to interchange between higher-order architectures is increased multi-fold when the building blocks have higher conformational degrees of freedom. Herein, we report a new ligand, (2,7-bis(di(pyridin-4-yl)amino)-9H-fluoren-9-one) (L), which, upon self-assembly with a cis-[(ethylene-1,2-diamine)Pd(NO3)2] acceptor (M), resulted in the formation of a M6L3 trifacial barrel (C1) in water. Interestingly, during crystallization, a rare M12L6 triangular orthobicupola architecture (C2) was generated along with C1. C2 could also be generated in solution via the application of several stimuli. C1 in aqueous media could stabilize one trans-stilbene (tS) or cis-stilbene (cS) molecule in its cavity, with a selectivity for the former from their mixture. Moreover, C1 acted as an effective host to prevent the otherwise facile photoisomerization of tS to cS inside its hydrophobic cavity under UV irradiation. Conversely, the visible-light-induced reverse isomerization of encapsulated cS to encapsulated tS could be achieved readily due to the better stabilization of tS within the cavity of C1 and its transparency to visible light. A multi-functional system was therefore designed, which at the same time is stimuli-responsive, shows isomer selectivity, and photo-protects trans-stilbene.
Collapse
Affiliation(s)
- Medha Aggarwal
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Ranit Banerjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| | - Neal Hickey
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, 34127, Italy
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
5
|
Li R, Yang T, Peng X, Feng Q, Hou Y, Zhu J, Chu D, Duan X, Zhang Y, Zhang M. Enhancing the Photosensitivity of Hypocrellin A by Perylene Diimide Metallacage-Based Host-Guest Complexation for Photodynamic Therapy. NANO-MICRO LETTERS 2024; 16:226. [PMID: 38916749 PMCID: PMC11199435 DOI: 10.1007/s40820-024-01438-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/06/2024] [Indexed: 06/26/2024]
Abstract
The development of supramolecular hosts which can efficiently encapsulate photosensitizers to improve the photodynamic efficacy holds great promise for cancer therapy. Here, we report two perylene diimide-based metallacages that can form stable host-guest complexes with planar conjugated molecules including polycyclic aromatic hydrocarbons and photosensitizers (hypocrellin A). Such host-guest complexation not only prevents the aggregation of photosensitizers in aqueous environments, but also offers fluorescence resonance energy transfer (FRET) from the metallacage to the photosensitizers to further improve the singlet oxygen generation (ΦΔ = 0.66). The complexes are further assembled with amphiphilic polymers, forming nanoparticles with improved stability for anticancer study. Both in vitro and in vivo studies indicate that the nanoparticles display excellent anticancer activities upon light irradiation, showing great potential for cancer photodynamic therapy. This study provides a straightforward and effective approach for enhancing the photosensitivity of conventional photosensitizers via host-guest complexation-based FRET, which will open a new avenue for host-guest chemistry-based supramolecular theranostics.
Collapse
Affiliation(s)
- Rongrong Li
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Tianfeng Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Xiuhong Peng
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Qian Feng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Yali Hou
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
- Department of Rehabilitation Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, People's Republic of China
| | - Jiao Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Dake Chu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Xianglong Duan
- Department of Rehabilitation Medicine, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, People's Republic of China.
| | - Yanming Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.
| | - Mingming Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China.
| |
Collapse
|
6
|
Ling QH, Lou ZC, Zhang L, Jin T, Dou WT, Yang HB, Xu L. Supramolecular cage-mediated cargo transport. Chem Soc Rev 2024; 53:6042-6067. [PMID: 38770558 DOI: 10.1039/d3cs01081c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
A steady stream of material transport based on carriers and channels in living systems plays an extremely important role in normal life activities. Inspired by nature, researchers have extensively applied supramolecular cages in cargo transport because of their unique three-dimensional structures and excellent physicochemical properties. In this review, we will focus on the development of supramolecular cages as carriers and channels for cargo transport in abiotic and biological systems over the past fifteen years. In addition, we will discuss future challenges and potential applications of supramolecular cages in substance transport.
Collapse
Affiliation(s)
- Qing-Hui Ling
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Wuhu Hospital Affiliated to East China Normal University (The Second People's Hospital of Wuhu), Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| | - Zhen-Chen Lou
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Wuhu Hospital Affiliated to East China Normal University (The Second People's Hospital of Wuhu), Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| | - Lei Zhang
- Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China
| | - Tongxia Jin
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Wuhu Hospital Affiliated to East China Normal University (The Second People's Hospital of Wuhu), Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| | - Wei-Tao Dou
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Wuhu Hospital Affiliated to East China Normal University (The Second People's Hospital of Wuhu), Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| | - Hai-Bo Yang
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Wuhu Hospital Affiliated to East China Normal University (The Second People's Hospital of Wuhu), Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| | - Lin Xu
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Wuhu Hospital Affiliated to East China Normal University (The Second People's Hospital of Wuhu), Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai 200241, China.
| |
Collapse
|
7
|
Qin H, Guo M, Zhou C, Li J, Jing X, Wan Y, Song W, Yu H, Peng G, Yao Z, Liu J, Hu K. Enhancing singlet oxygen production of dioxygen activation on the carbon-supported rare-earth oxide nanocluster and rare-earth single atom catalyst to remove antibiotics. WATER RESEARCH 2024; 252:121184. [PMID: 38377699 DOI: 10.1016/j.watres.2024.121184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/20/2024] [Accepted: 01/23/2024] [Indexed: 02/22/2024]
Abstract
Singlet oxygen (1O2) is extensively employed in the fields of chemical, biomedical and environmental. However, it is still a challenge to produce high- concentration 1O2 by dioxygen activation. Herein, a system of carbon-supported rare-earth oxide nanocluster and single atom catalysts (named as RE2O3/RE-C, RE=La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sc and Y) with similar morphology, structure, and physicochemical characteristic are constructed to activate dissolved oxygen (DO) to enhance 1O2 production. The catalytic activity trends and mechanisms are revealed experimentally and are also proven by theoretical analyses and calculations. The 1O2 generation activity trend is Gd2O3/Gd-C>Er2O3/Er-C>Sm2O3/Sm-C>pristine carbon (C). More than 95.0% of common antibiotics (ciprofloxacin, ofloxacin, norfloxacin and carbamazepine) can be removed in 60 min by Gd2O3/Gd-C. Density functional theory calculations indicate that Gd2O3 nanoclusters and Gd single atoms exhibit the moderate adsorption energy of ·O2- to enhance 1O2 production. This study offers a universal strategy to enhance 1O2 production in dioxygen activation for future application and reveals the natural essence of basic mechanisms of 1O2 production via rare-earth oxide nanoclusters and rare-earth single atoms.
Collapse
Affiliation(s)
- Haonan Qin
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Rare Earth, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Meina Guo
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Rare Earth, Chinese Academy of Sciences, Ganzhou 341000, China; Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341000, China
| | - Chenliang Zhou
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Rare Earth, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Jiarong Li
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Rare Earth, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Xuequan Jing
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Rare Earth, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Yinhua Wan
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Rare Earth, Chinese Academy of Sciences, Ganzhou 341000, China; Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341000, China; Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Weijie Song
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Rare Earth, Chinese Academy of Sciences, Ganzhou 341000, China; Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341000, China; Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongdong Yu
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Rare Earth, Chinese Academy of Sciences, Ganzhou 341000, China; Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341000, China
| | - Guan Peng
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Rare Earth, Chinese Academy of Sciences, Ganzhou 341000, China; Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341000, China
| | - Zhangwei Yao
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Rare Earth, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Jiaming Liu
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Rare Earth, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Kang Hu
- School of Rare Earths, University of Science and Technology of China, Hefei, Anhui 230026, China; Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China; Key Laboratory of Rare Earth, Chinese Academy of Sciences, Ganzhou 341000, China; Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganzhou 341000, China.
| |
Collapse
|
8
|
Prajapati D, Bhandari P, Zangrando E, Mukherjee PS. A water-soluble Pd 4 molecular tweezer for selective encapsulation of isomeric quinones and their recyclable extraction. Chem Sci 2024; 15:3616-3624. [PMID: 38455025 PMCID: PMC10915840 DOI: 10.1039/d3sc05093a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024] Open
Abstract
Quinones (QN) are one of the main components of diesel exhaust particulates that have significant detrimental effects on human health. Their extraction and purification have been challenging tasks because these atmospheric particulates exist as complex matrices consisting of inorganic and organic compounds. In this report, we introduce a new water soluble Pd4L2 molecular architecture (MT) with an unusual tweezer-shaped structure obtained by self-assembly of a newly designed phenothiazine-based tetra-imidazole donor (L) with the acceptor cis-[(tmeda)Pd(NO3)2] (M) [ tmeda = N,N,N',N'-tetramethylethane-1,2-diamine]. The molecular tweezer encapsulates some quinones existing in diesel exhaust particulates (DEPs) leading to the formation of host-guest complexes in 1 : 1 molar ratio. Moreover, MT binds phenanthrenequinone (PQ) more strongly than its isomer anthraquinone (AQ), an aspect that enables extraction of PQ with a purity of 91% from an equimolar mixture of the two isomers. Therefore, MT represents an excellent example of supramolecular receptor capable of selective aqueous extraction of PQ from PQ/AQ with many cycles of reusability.
Collapse
Affiliation(s)
- Dharmraj Prajapati
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore-560012 India
| | - Pallab Bhandari
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore-560012 India
| | - Ennio Zangrando
- Department of Chemical and Pharmaceuticals Sciences, University of Trieste Trieste 34127 Italy
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science Bangalore-560012 India
| |
Collapse
|
9
|
Zhang R, Yang D, Zang P, He F, Gai S, Kuang Y, Yang G, Yang P. Structure Engineered High Piezo-Photoelectronic Performance for Boosted Sono-Photodynamic Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308355. [PMID: 37934805 DOI: 10.1002/adma.202308355] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/31/2023] [Indexed: 11/09/2023]
Abstract
Sono-photodynamic therapy is hindered by the limited tissue penetration depth of the external light source and the quick recombination of electron-hole owing to the random movement of charge carriers. In this study, orthorhombic ZnSnO3 quantum dots (QDs) with piezo-photoelectronic effects are successfully encapsulated in hexagonal upconversion nanoparticles (UCNPs) using a one-pot thermal decomposition method to form an all-in-one watermelon-like structured sono-photosensitizer (ZnSnO3 @UCNPs). The excited near-infrared light has high penetration depth, and the watermelon-like structure allows for full contact between the UCNPs and ZnSnO3 QDs, achieving ultrahigh Förster resonance energy transfer efficiency of up to 80.30%. Upon ultrasonic and near-infrared laser co-activation, the high temperature and pressure generated lead to the deformation of the UCNPs, thereby driving the deformation of all ZnSnO3 QDs inside the UCNPs, forming many small internal electric fields similar to isotropic electric domains. This piezoelectric effect not only increases the internal electric field intensity of the entire material but also prevents random movement and rapid recombination of charge carriers, thereby achieving satisfactory piezocatalytic performance. By combining the photodynamic effect arising from the energy transfer from UCNPs to ZnSnO3 , synergistic efficacy is realized. This study proposes a novel strategy for designing highly efficient sono-photosensitizers through structural design.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Dan Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Pengyu Zang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| | - Ye Kuang
- College of Materials Science and Engineering, Shenyang Ligong University, Shenyang, 110159, P. R. China
| | - Guixin Yang
- College of Material Sciences and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, P. R. China
| |
Collapse
|
10
|
Hu YX, Hao X, Wang D, Zhang ZC, Sun H, Xu XD, Xie X, Shi X, Peng H, Yang HB, Xu L. Light-Responsive Supramolecular Liquid-Crystalline Metallacycle for Orthogonal Multimode Photopatterning. Angew Chem Int Ed Engl 2024; 63:e202315061. [PMID: 37966368 DOI: 10.1002/anie.202315061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/16/2023]
Abstract
The development of multimode photopatterning systems based on supramolecular coordination complexes (SCCs) is considerably attractive in supramolecular chemistry and materials science, because SCCs can serve as promising platforms for the incorporation of multiple functional building blocks. Herein, we report a light-responsive liquid-crystalline metallacycle that is constructed by coordination-driven self-assembly. By exploiting its fascinating liquid crystal features, bright emission properties, and facile photocyclization capability, a unique system with spatially-controlled fluorescence-resonance energy transfer (FRET) is built through the introduction of a photochromic spiropyran derivative, which led to the realization of the first example of a liquid-crystalline metallacycle for orthogonal photopatterning in three-modes, namely holography, fluorescence, and photochromism.
Collapse
Affiliation(s)
- Yi-Xiong Hu
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Xingtian Hao
- State Key Laboratory of Materials Processing and Die & Mould Technology, and MOE Key Laboratory of Materials Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Dan Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, and MOE Key Laboratory of Materials Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zi-Cheng Zhang
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Haitao Sun
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, P. R. China
| | - Xing-Dong Xu
- Key Laboratory of Special Functional Aggregated Materials of Ministry of Education, School of Chemistry and Chemical Engineering, National Engineering Research Center for Colloidal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xiaolin Xie
- State Key Laboratory of Materials Processing and Die & Mould Technology, and MOE Key Laboratory of Materials Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Xueliang Shi
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Haiyan Peng
- State Key Laboratory of Materials Processing and Die & Mould Technology, and MOE Key Laboratory of Materials Chemistry for Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Hai-Bo Yang
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Lin Xu
- State Key Laboratory of Petroleum Molecular and Process Engineering, Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| |
Collapse
|