1
|
Tian L, Han S, Wu W, Li Z, He Z, Liu C, Xue H, Zhou F, Liu W, Liu J. Dose-effect relationship of copolymer on enhancing aqueous lubrication of a hybrid osteoarthritis drug delivery nanocarrier. J Colloid Interface Sci 2025; 679:788-797. [PMID: 39481353 DOI: 10.1016/j.jcis.2024.10.162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
Developing stimulus-responsive properties of drug delivery nanocarriers combined with enhanced joint lubrication is an effective synergistic strategy for treating osteoarthritis. Poly(N-isopropylacrylamide) (PNIPAm) is a typical thermo-responsive polymer, which can achieve drug delivery by transition from swollen state to collapsed state. However, undesired transition temperature, limited drug loading capacity, and weakened mechanical properties in joint present obstacles to use as drug delivery nanocarriers. In this work, we demonstrate dose-effect relationship between the PNIPAm-based copolymer and nanoscale metal-organic frameworks on enhancing both aqueous lubrication and drug delivery performance of a hybrid osteoarthritis (OA) nanocarrier. A series of NIPAm and poly(ethylene glycol)methacrylate (PEGMa) copolymer microgels with different feeding content are optimized to grow on the surface of MIL-101(Cr) nanoparticles via one-pot soap-free emulsion copolymerization method. By changing the feeding mass ratio of NIPAm and PEGMa, MIL-101(Cr)@P(NIPAm-g-PEGMax) (x = 0, 1, 2, 3, and 4, named MPNPx) hybrids can ameliorate the lower critical solution temperature to match with OA and enhance the aqueous lubrication performance. Among the as-synthesized hybrids, MPNP3 hybrids manifested the notable enhanced thermo-responsive tribological performance due to the synergistic effect of "hydration lubrication" and "ball-bearing" function of the optimized copolymer microgel layer on the surface of metal-organic frameworks (MOFs). Anti-inflammatory drug loading is enabled by the high surface area and porosity of the MOFs, and the MPNP3 drug delivery nanocarriers achieve thermo-responsive release in vitro. Our work establishes the dose-effect relationship between thermo-responsive NIPAm and hydrophilic PEGMa of the copolymer grown on the surface of MOFs, providing valuable insights for improving the versatility of stimuli-responsive for biomedical application.
Collapse
Affiliation(s)
- Lejie Tian
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Sirui Han
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Wei Wu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Zhihuan Li
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Zhengze He
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Chen Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Huidan Xue
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Weimin Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Jianxi Liu
- State Key Laboratory of Solidification Processing, Center of Advanced Lubrication and Seal Materials, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| |
Collapse
|
2
|
Wang T, Young WO, Suazo MJ, Peera A, Carter MCD, Yeung K, Li L, Torkelson JM. Random Copolymers Based on 2-Ethylhexyl Acrylate Exhibit Unusual Glass Transition Breadth and Facile Autonomous Self-Healing over a Broad Composition Range. Macromol Rapid Commun 2024; 45:e2400198. [PMID: 39150329 PMCID: PMC11583354 DOI: 10.1002/marc.202400198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/24/2024] [Indexed: 08/17/2024]
Abstract
Statistical copolymers are commercially important because their properties can be tuned by comonomer selection and composition. Rubbery-state styrene (S)/n-butyl acrylate (nBA) copolymers have previously been reported to exhibit facile, autonomous self-healing over a narrow composition band (47/53 to 53/47 mol%). The need for a narrow composition band is explained by alternating comonomer sequences that accommodate interchain secondary bonding. It is hypothesized that copolymers that achieve interchain secondary bonding without alternating sequences can exhibit facile self-healing over a broad composition range. 2-ethylhexyl acrylate (EHA) is identified as yielding sequence-independent secondary bonding interactions. For these interactions it is tested experimentally by glass transition breadth in rubbery-state S/EHA copolymers, with S/n-hexyl acrylate (nHA) and S/nBA copolymers as controls. The n-alkyl acrylate random copolymers exhibit enhanced glass transition breadths over narrow composition bands that correspond to autonomous self-healing. In contrast, S/EHA copolymers exhibit much greater glass transition breadths than S/nHA and S/nBA copolymers at all compositions tested as well as self-healing of damage over a broad composition range with full tensile-property recovery, often in 3-10 h. Characterization of glass transition breadth may serve as a simple screening tool for identifying copolymers that exhibit broad-composition-range, facile, autonomous self-healing and contribute to polymer resilience and sustainability.
Collapse
Affiliation(s)
- Tong Wang
- Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonIL60208USA
| | | | - Mathew J. Suazo
- Department of Materials Science and EngineeringNorthwestern UniversityEvanstonIL60208USA
| | - Asghar Peera
- The Dow Chemical Company400 Arcola RoadCollegevillePA19426USA
| | | | - Kimy Yeung
- The Dow Chemical Company400 Arcola RoadCollegevillePA19426USA
| | - Li Li
- The Dow Chemical Company400 Arcola RoadCollegevillePA19426USA
| | - John M. Torkelson
- Department of Chemical and Biological EngineeringNorthwestern UniversityEvanstonIL60208USA
- Department of Materials Science and EngineeringNorthwestern UniversityEvanstonIL60208USA
| |
Collapse
|
3
|
Ishikawa A, Ouchi M. Alternating Graft Copolymer Carrying PLA Graft Chains at Every Other Unit: Sequence Impacts on Crystallization Behaviors. ACS Macro Lett 2024; 13:1072-1078. [PMID: 39095698 DOI: 10.1021/acsmacrolett.4c00290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Alternating graft copolymers were precisely synthesized via selective cyclopolymerization of pendant-transformable divinyl monomer (1), post-polymerization modification via aminolysis with alkylamine, and ring-opening polymerization of l-lactide (LLA) from the hydroxy pendant group in alternating sequence. The poly(LLA) (PLLA) graft chain on the alternating copolymer gave a higher crystallization degree on the isothermal treatment than that on the random counterpart likely because of the periodic sequence. The comonomer pendant group from alkylamine in the aminolysis reaction in the alternating sequence affected the crystallization behaviors, and the oligoethylene glycol (OEG) group promoted the crystallization thanks to the larger free volume effect. As for the stereocomplex formation of the racemic mixture of enantiomeric PLLA and poly(d-lactide) (PDLA) chains, the alternating graft copolymer gave a higher degree of stereocomplex crystallization in the mixture with the enantiomer homopolymer than the random analogue.
Collapse
Affiliation(s)
- Aoto Ishikawa
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
4
|
Kubota H, Ouchi M. Design of sec-Benzyl Vinyl Ethers toward the Synthesis of Alternating Copolymers Composed of Vinyl Alcohol and Vinyl Ether Units. ACS Macro Lett 2024; 13:429-434. [PMID: 38546013 DOI: 10.1021/acsmacrolett.4c00118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
In this work, we designed benzyl vinyl ethers carrying alkyl substituents at the benzyl position (i.e., sec-BnVEs) as bulky, reactive, and transformable monomers to realize the alternating cationic copolymerization with an alkyl vinyl ether (VE). In particular, the isopropyl substitution caused not only the bulkiness to suppress the successive propagation but also an enhancement of the vinyl group reactivity to promote crossover propagation with a less bulky VE comonomer. The isopropyl-substituted BnVE (iPr-BnVE) underwent living cationic alternating copolymerization with n-butyl VE (nBVE), and the alternating propagation was strongly suggested by the reactivity ratios. The subsequent deprotection of the sec-benzyl pendant afforded the vinyl alcohol (VA)-nBVE alternating copolymer, and the corresponding statistical copolymer was also synthesized by using the nonsubstituted monomer (BnVE) instead of iPr-BnVE. The alternating copolymer exhibited a higher glass transition temperature, which likely stems from the uniform and efficient hydrogen-bonding formation due to the periodic sequence.
Collapse
Affiliation(s)
- Hiroyuki Kubota
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
5
|
Ariga K, Song J, Kawakami K. Layer-by-layer designer nanoarchitectonics for physical and chemical communications in functional materials. Chem Commun (Camb) 2024; 60:2152-2167. [PMID: 38291864 DOI: 10.1039/d3cc04952c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Nanoarchitectonics, as a post-nanotechnology concept, constructs functional materials and structures using nanounits of atoms, molecules, and nanomaterials as materials. With the concept of nanoarchitectonics, asymmetric structures, and hierarchical organization, rather than mere assembly and organization of structures, can be produced, where rational physical and chemical communications will lead to the development of more advanced functional materials. Layer-by-layer assembly can be a powerful tool for this purpose, as exemplified in this feature paper. This feature article explores the possibility of constructing advanced functional systems based on recent examples of layer-by-layer assembly. We will illustrate both the development of more basic methods and more advanced nanoarchitectonics systems aiming towards practical applications. Specifically, the following sections will provide examples of (i) advancement in basics and methods, (ii) physico-chemical aspects and applications, (iii) bio-chemical aspects and applications, and (iv) bio-medical applications. It can be concluded that materials nanoarchitectonics based on layer-by-layer assembly is a useful method for assembling asymmetric structures and hierarchical organization, and is a powerful technique for developing functions through physical and chemical communication.
Collapse
Affiliation(s)
- Katsuhiko Ariga
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwa-no-ha, Kashiwa 277-8561, Japan
| | - Jingwen Song
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
| | - Kohsaku Kawakami
- Research Center for Functional Materials, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Ibaraki, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki, Japan
| |
Collapse
|
6
|
Wan J, Dan Y, Huang Y, Jiang L. Achieving high molecular weight alternating copolymers of 1-octene with methyl acrylate via Lewis acid catalyzed copolymerization. RSC Adv 2024; 14:6374-6384. [PMID: 38380238 PMCID: PMC10877320 DOI: 10.1039/d4ra00165f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024] Open
Abstract
The radical (co)polymerization of long-chain α-olefins (C4+) to produce high molecular weight (Mw) polymers is of great importance. However, this process is currently faced with significant challenges due to the presence of less reactive allylic radicals during radical (co)polymerization, leading to oligomers or polymers with extremely low Mw (less than 1 × 104 g mol-1). Using copolymerization of 1-octene with methyl acrylate (MA) as a proof-of-concept for addressing this challenge, we present a feasible method for synthesizing high Mw α-olefin copolymers via scandium trifluoromethanesulfonate (Sc(OTf)3)-mediated radical copolymerization. In this case, copolymers of 1-octene and MA (poly(1-octene-alt-MA)) with a Mw exceeding 3 × 104 g mol-1 were successfully synthesized in the presence of Sc(OTf)3. Meanwhile, the presence of alternating 1-octene-MA sequential structures was observed. To further enhance the Mw of poly(1-octene-alt-MA), a difunctional comonomer, 1,7-octadiene, was introduced to copolymerize with 1-octene and MA. The results indicate that the incorporation of difunctional comonomer leads to a significant increase in the Mw of the copolymers synthesized. The addition of 1 mol% of 1,7-octadiene resulted in a copolymer with a remarkably high Mw of up to 13.45 × 104 g mol-1 while still maintaining a high degree of the alternating 1-octene-MA sequence (41%). The influence of polymerization parameters on the molecular weight were also investigated. Increasing the monomer concentration, reducing the dosage of initiator, and lowering the polymerization temperature have been found to be advantageous in enhancing the molecular weight. This approach has also been successfully applied to the synthesis of high molecular weight alternating copolymers of other long-chain α-olefins, including 1-hexene, 1-decene and 1-tetradecane, with methyl acrylate. In summary, this study provides a feasible method for converting "less activated" α-olefins into high Mw olefin copolymers. This approach holds significant potential for the production of value-added polyolefins, thus offering promising prospects for future applications.
Collapse
Affiliation(s)
- Jiefan Wan
- State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Polymer Research Institute of Sichuan University Chengdu 610065 China
| | - Yi Dan
- State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Polymer Research Institute of Sichuan University Chengdu 610065 China
| | - Yun Huang
- State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Polymer Research Institute of Sichuan University Chengdu 610065 China
| | - Long Jiang
- State Key Laboratory of Polymer Materials Engineering of China (Sichuan University), Polymer Research Institute of Sichuan University Chengdu 610065 China
| |
Collapse
|
7
|
Zhao Y, Wu H, Yin R, Matyjaszewski K, Bockstaller MR. The Importance of Bulk Viscoelastic Properties in "Self-Healing" of Acrylate-Based Copolymer Materials. ACS Macro Lett 2024; 13:1-7. [PMID: 38079594 PMCID: PMC10795469 DOI: 10.1021/acsmacrolett.3c00626] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 01/17/2024]
Abstract
"Self-healing" has emerged as a concept to increase the functional stability and durability of polymer materials in applications and thus to benefit the sustainability of polymer-based technologies. Recently, van der Waals (vdW)-driven "self-healing" of sequence-controlled acrylate-based copolymers due to "key-and-lock"- or "ring-and-lock"-type interactions has generated considerable interest as a viable route toward engineering polymers with "self-healing" ability. This contribution systematically evaluates the time, temperature, and composition dependence of the mechanical recovery of acrylate-based copolymer and homopolymer systems subject to cut-and-adhere testing. "Self-healing" in n-butyl acrylate/methyl methacrylate (BA/MMA)- or n-butyl acrylate/styrene (BA/Sty)-based copolymers with varying composition and sequence is found to correlate with the bulk viscoelastic properties of materials and to follow a similar trend as other tested acrylate-based homo- and copolymers. This suggests that "self-healing" in this class of materials is more related to the chain dynamics of bulk materials rather than composition- or sequence-dependent specific interactions.
Collapse
Affiliation(s)
- Yuqi Zhao
- Department
of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Hanshu Wu
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Rongguan Yin
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Michael R. Bockstaller
- Department
of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
8
|
Zhao Y, Wu H, Yin R, Yu C, Matyjaszewski K, Bockstaller MR. Copolymer Brush Particle Hybrid Materials with "Recall-and-Repair" Capability. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:6990-6997. [PMID: 37719032 PMCID: PMC10501442 DOI: 10.1021/acs.chemmater.3c01234] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/01/2023] [Indexed: 09/19/2023]
Abstract
The effect of sequence structure on the self-healing and shape-memory properties of copolymer-tethered brush particle films was investigated and compared to linear copolymer analogs. Poly(n-butyl acrylate-co-methyl methacrylate), P(BA-co-MMA), and linear and brush analogs with controlled gradient and statistical sequence were synthesized by atom transfer radical polymerization (ATRP). The effect of sequence on self-healing in BA/MMA copolymer brush particle hybrids followed similar trends as for linear analogs. Most rapid restoration of mechanical properties was found for statistical copolymer sequence; an increase of the high Tg (MMA) component provided a path to raise the material's modulus while retaining self-heal ability. Creep testing revealed profound differences between linear and brush systems. While linear copolymers featured substantial viscous deformation when exposed to constant stress in the linear regime, brush analogs displayed minimal permanent deformation and featured shape restoration. The reduction of flow was interpreted to be a consequence of slow cooperative relaxation due to the complex microstructure of brush particle hybrids in which long-range motions are constrained through entanglements and slow-diffusing particle cores. The rubbery-like response imparts BA/MMA copolymer brush material systems concurrent "shape-memory" and "self-heal" capability. This ability to "recall-and-repair" could find application in the design of functional hybrid materials, for example, for soft robotics.
Collapse
Affiliation(s)
- Yuqi Zhao
- Department
of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Hanshu Wu
- Department
of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Rongguan Yin
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Chenxi Yu
- Department
of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department
of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Michael R. Bockstaller
- Department
of Materials Science & Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|