1
|
Lai C, Yang L, Pathiranage V, Wang R, Subach FV, Walker AR, Piatkevich KD. Genetically encoded green fluorescent sensor for probing sulfate transport activity of solute carrier family 26 member a2 (Slc26a2) protein. Commun Biol 2024; 7:1375. [PMID: 39443638 PMCID: PMC11499995 DOI: 10.1038/s42003-024-07020-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 10/04/2024] [Indexed: 10/25/2024] Open
Abstract
Genetically encoded fluorescent biosensors became indispensable tools for biological research, enabling real-time observation of physiological processes in live cells. Recent protein engineering efforts have resulted in the generation of a large variety of fluorescent biosensors for a wide range of biologically relevant processes, from small ions to enzymatic activity and signaling pathways. However, biosensors for imaging sulfate ions, the fourth most abundant physiological anion, in mammalian cells are still lacking. Here, we report the development and characterization of a green fluorescent biosensor for sulfate named Thyone. Thyone, derived through structure-guided design from bright green fluorescent protein mNeonGreen, exhibited a large negative fluorescence response upon subsecond association with sulfate anion with an affinity of 11 mM in mammalian cells. By integrating mutagenesis analyses with molecular dynamics simulations, we elucidated the molecular mechanism of sulfate binding and revealed key amino acid residues responsible for sulfate sensitivity. High anion selectivity and sensitivity of Thyone allowed for imaging of sulfate anion transients mediated by sulfate transporter heterologously expressed in cultured mammalian cells. We believe that Thyone will find a broad application for assaying the sulfate transport in mammalian cells via anion transporters and exchangers.
Collapse
Affiliation(s)
- Cuixin Lai
- School of Life Science, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advance Study, Hangzhou, Zhejiang, China
| | - Lina Yang
- School of Life Science, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advance Study, Hangzhou, Zhejiang, China
| | | | - Ruizhao Wang
- School of Life Science, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Basic Medical Sciences, Westlake Institute for Advance Study, Hangzhou, Zhejiang, China
| | - Fedor V Subach
- Complex of NBICS Technologies, National Research Center "Kurchatov Institute", Moscow, Russia
| | - Alice R Walker
- Department of Chemistry, Wayne State University, Detroit, MI, USA.
| | - Kiryl D Piatkevich
- School of Life Science, Westlake University, Hangzhou, Zhejiang, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advance Study, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Tutol J, Ong WSY, Phelps SM, Peng W, Goenawan H, Dodani SC. Engineering the ChlorON Series: Turn-On Fluorescent Protein Sensors for Imaging Labile Chloride in Living Cells. ACS CENTRAL SCIENCE 2024; 10:77-86. [PMID: 38292617 PMCID: PMC10823515 DOI: 10.1021/acscentsci.3c01088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 11/02/2023] [Accepted: 11/27/2023] [Indexed: 02/01/2024]
Abstract
Beyond its role as the "queen of electrolytes", chloride can also serve as an allosteric regulator or even a signaling ion. To illuminate this essential anion across such a spectrum of biological processes, researchers have relied on fluorescence imaging with genetically encoded sensors. In large part, these have been derived from the green fluorescent protein found in the jellyfish Aequorea victoria. However, a standalone sensor with a turn-on intensiometric response at physiological pH has yet to be reported. Here, we address this technology gap by building on our discovery of the anion-sensitive fluorescent protein mNeonGreen (mNG). The targeted engineering of two non-coordinating residues, namely K143 and R195, in the chloride binding pocket of mNG coupled with an anion walking screening and selection strategy resulted in the ChlorON sensors: ChlorON-1 (K143W/R195L), ChlorON-2 (K143R/R195I), and ChlorON-3 (K143R/R195L). In vitro spectroscopy revealed that all three sensors display a robust turn-on fluorescence response to chloride (20- to 45-fold) across a wide range of affinities (Kd ≈ 30-285 mM). We further showcase how this unique sensing mechanism can be exploited to directly image labile chloride transport with spatial and temporal resolution in a cell model overexpressing the cystic fibrosis transmembrane conductance regulator. Building from this initial demonstration, we anticipate that the ChlorON technology will have broad utility, accelerating the path forward for fundamental and translational aspects of chloride biology.
Collapse
Affiliation(s)
- Jasmine
N. Tutol
- Department
of Chemistry and Biochemistry and Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Whitney S. Y. Ong
- Department
of Chemistry and Biochemistry and Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Shelby M. Phelps
- Department
of Chemistry and Biochemistry and Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Weicheng Peng
- Department
of Chemistry and Biochemistry and Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Helen Goenawan
- Department
of Chemistry and Biochemistry and Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Sheel C. Dodani
- Department
of Chemistry and Biochemistry and Department of Biological Sciences, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|