1
|
Guo T, Yun Y, Li T, Xia J, Zhou J, Sheng H, Zhu M. Double reactive oxygen species system photoinduced by Cu 8 NCs: synergistic catalysis of phenylacetylene self-coupling reaction. NANOSCALE 2025; 17:4670-4675. [PMID: 39812479 DOI: 10.1039/d4nr04754k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Atomically precise nanoclusters (NCs) can serve as an excellent platform for a comprehensive understanding of structure-property relationships. Herein, three structurally similar Cu8 NCs (Cu8-1, Cu8-2 and Cu8-3) have been prepared for the photocatalytic phenylacetylene self-coupling reaction. It was found that Cu8-1 NC achieved the highest turnover number (TON) of 524.4, significantly higher than those of most reported catalysts. Herein, we propose a reasonable two-channel ROS participation mechanism by free radical scavenging and electron paramagnetic resonance (EPR) trapping experiments. This study provides a feasible strategy for exploring the photoinduced oxidative coupling of phenylacetylene, and provides a way for designing photocatalysts.
Collapse
Affiliation(s)
- Tingyu Guo
- School of Chemistry & Chemical Engineering, School of Materials Science and Engineering and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Department of Chemistry and Center for Atomic Engineering of Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of the Ministry of Education, Anhui University, Hefei, 230601, China.
| | - Yapei Yun
- School of Chemistry & Chemical Engineering, School of Materials Science and Engineering and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Department of Chemistry and Center for Atomic Engineering of Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of the Ministry of Education, Anhui University, Hefei, 230601, China.
| | - Tianrong Li
- School of Chemistry & Chemical Engineering, School of Materials Science and Engineering and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Department of Chemistry and Center for Atomic Engineering of Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of the Ministry of Education, Anhui University, Hefei, 230601, China.
| | - Jun Xia
- School of Chemistry & Chemical Engineering, School of Materials Science and Engineering and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Department of Chemistry and Center for Atomic Engineering of Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of the Ministry of Education, Anhui University, Hefei, 230601, China.
| | - Jinyan Zhou
- School of Chemistry & Chemical Engineering, School of Materials Science and Engineering and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Department of Chemistry and Center for Atomic Engineering of Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of the Ministry of Education, Anhui University, Hefei, 230601, China.
| | - Hongting Sheng
- School of Chemistry & Chemical Engineering, School of Materials Science and Engineering and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Department of Chemistry and Center for Atomic Engineering of Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of the Ministry of Education, Anhui University, Hefei, 230601, China.
| | - Manzhou Zhu
- School of Chemistry & Chemical Engineering, School of Materials Science and Engineering and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Department of Chemistry and Center for Atomic Engineering of Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of the Ministry of Education, Anhui University, Hefei, 230601, China.
| |
Collapse
|
2
|
Nag A, Butt AM, Yang MY, Managutti PB, Pirzada BM, Mohideen MIH, Abdelhady AL, Haija MA, Mohamed S, Merinov BV, Goddard WA, Qurashi A. Polymorphism of [Cu 15(PhCH 2CH 2S) 13(PPh 3) 6][BF 4] 2 and Double-Helical Assembly of [Cu 18H(PhCH 2CH 2S) 14(PPh 3) 6Cl 3]: Origin of Two Chiral Nanoclusters with Triple-Helical Core from Intermediates. ACS MATERIALS LETTERS 2025; 7:442-449. [PMID: 39917081 PMCID: PMC11795624 DOI: 10.1021/acsmaterialslett.4c02148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 02/09/2025]
Abstract
Here, we report the solvent-induced polymorphism in [Cu15(PET)13(TPP)6][BF4]2(Cu15) (TPP = triphenylphosphine, PET = 2-phenylethanthiol), and double-helical assembly of the [Cu18H(PET)14(TPP)6Cl3] (Cu18) nanocluster (NC) from reaction intermediates. Both copper NCs have an intrinsically chiral triple-stranded helicate metal core, unlike traditional copper NCs with a polyhedral-based kernel. The chiral structure of Cu15 resembles an enantiomeric pair in the unit cell. Moreover, Cu18 has a three-layered 3D chirality of a sandwich constructed of sulfur-bridged copper NCs aligned in a top-middle-down configuration. Furthermore, the Cu18 NC self-hierarchically assembles into a complex double-stranded helix secondary structure sustained by noncovalent interactions. Electrospray ionization mass spectrometry (ESI-MS), density functional theory (DFT), and X-ray photoelectron spectroscopy (XPS) were utilized to validate the single-crystal X-ray diffraction (SCXRD) data. Overall, this study provides an interesting example of polymorphism, chirality, and hierarchical double-helical assembly of NCs, allowing for extensive understanding of complicated structures at the atomic level.
Collapse
Affiliation(s)
- Abhijit Nag
- Department
of Chemistry, Khalifa University of Science
and Technology, Abu Dhabi 127788, United
Arab Emirates
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Abdul Mannan Butt
- Department
of Chemistry, Khalifa University of Science
and Technology, Abu Dhabi 127788, United
Arab Emirates
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Moon Young Yang
- Materials
and Process Simulation Center (MSC), California
Institute of Technology, Pasadena, California 91125, United States
| | - Praveen B. Managutti
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Chemical
Crystallography Laboratory, Khalifa University
of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Bilal Masood Pirzada
- Department
of Chemistry, Khalifa University of Science
and Technology, Abu Dhabi 127788, United
Arab Emirates
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - M. Infas H. Mohideen
- Department
of Chemistry, Khalifa University of Science
and Technology, Abu Dhabi 127788, United
Arab Emirates
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Ahmed L. Abdelhady
- Department
of Chemistry, Khalifa University of Science
and Technology, Abu Dhabi 127788, United
Arab Emirates
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Mohamed Abu Haija
- Department
of Chemistry, Khalifa University of Science
and Technology, Abu Dhabi 127788, United
Arab Emirates
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Sharmarke Mohamed
- Department
of Chemistry, Khalifa University of Science
and Technology, Abu Dhabi 127788, United
Arab Emirates
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, Abu Dhabi 127788, United Arab Emirates
- Chemical
Crystallography Laboratory, Khalifa University
of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Boris V. Merinov
- Materials
and Process Simulation Center (MSC), California
Institute of Technology, Pasadena, California 91125, United States
| | - William A. Goddard
- Materials
and Process Simulation Center (MSC), California
Institute of Technology, Pasadena, California 91125, United States
| | - Ahsanulhaq Qurashi
- Department
of Chemistry, Khalifa University of Science
and Technology, Abu Dhabi 127788, United
Arab Emirates
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
3
|
Deng G, Yun H, Chen Y, Yoo S, Lee K, Jang J, Liu X, Lee CW, Tang Q, Bootharaju MS, Hwang YJ, Hyeon T. Ferrocene-Functionalized Atomically Precise Metal Clusters Exhibit Synergistically Enhanced Performance for CO 2 Electroreduction. Angew Chem Int Ed Engl 2025; 64:e202418264. [PMID: 39628114 DOI: 10.1002/anie.202418264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Indexed: 12/14/2024]
Abstract
The integration of organometallic compounds with metal nanoparticles can, in principle, generate hybrid nanocatalysts endowed with augmented functionality, presenting substantial promise for catalytic applications. Herein, we synthesize an atomically precise metal cluster (Ag9Cu6) catalyst integrated with alkynylferrocene molecules (Ag9Cu6-Fc). This hybrid catalyst design facilitates a continuous electron transfer channel via an ethynyl bridge and establishes a distinctive local chemical environment, resulting in remarkably enhanced catalytic activity in CO2 electroreduction. The Ag9Cu6-Fc catalyst achieves a record-high product selectivity of CO Faradaic efficiency of 100 % and an industrial-level CO partial current density of -680 mA/cm2, surpassing the performance of the Ag9Cu6 cluster (62 % and -230 mA/cm2, respectively) without ferrocene functionalization in a membrane electrode assembly cell. Operando experimental and computational findings offer valuable insights into the role of ferrocene functionalization in synergistically improving the catalytic performance of metal clusters, propelling the advancement of metallic-organometallic hybrid nanoparticles for energy conversion technologies.
Collapse
Affiliation(s)
- Guocheng Deng
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyewon Yun
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yuping Chen
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Seungwoo Yoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kangjae Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Junghwan Jang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Xiaolin Liu
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Chan Woo Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Qing Tang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing, 401331, China
| | - Megalamane S Bootharaju
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Yun Jeong Hwang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
4
|
Wen S, Zhang C, Liu LJ, Wang Z, Sun D, He J. Stable and Recyclable Copper Nanoclusters with Exposed Active Sites for Broad-Scope Protosilylation in Open Air. Angew Chem Int Ed Engl 2025; 64:e202416851. [PMID: 39453775 DOI: 10.1002/anie.202416851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 10/27/2024]
Abstract
Despite recent advances in cluster-based catalysis for organic synthesis, the substrate scope of reactions catalyzed by metal nanoclusters is typically not superior to previously established catalytic systems. Herein, we develop new atomically precise copper nanoclusters for protosilylation, with scope expanding to alkenes and simple enynes that were not suitable for prior synthetic methodologies with traditional copper complexes. The involvement of a second copper center in the metal kernel during the migratory insertion step is thought to be responsible for the expanded scope. In addition, the reaction is highly compatible with water and can be carried out in open air rather than under inert gas protection. Mechanistic studies suggest that the cluster-catalyzed protosilylation proceeds in the absence of silyl radicals. The current findings demonstrate the potential of using metal nanoclusters for practical and sustainable chemical synthesis.
Collapse
Affiliation(s)
- Songwei Wen
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R., China
| | - Chengkai Zhang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| | - Li-Juan Liu
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R., China
| | - Zhi Wang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji'nan, 250100, P. R. China
| | - Jian He
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R., China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, 518063, P. R. China
| |
Collapse
|
5
|
Chen M, Guo C, Qin L, Wang L, Qiao L, Chi K, Tang Z. Atomically Precise Cu Nanoclusters: Recent Advances, Challenges, and Perspectives in Synthesis and Catalytic Applications. NANO-MICRO LETTERS 2024; 17:83. [PMID: 39625605 PMCID: PMC11615184 DOI: 10.1007/s40820-024-01555-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/30/2024] [Indexed: 12/06/2024]
Abstract
Atomically precise metal nanoclusters are an emerging type of nanomaterial which has diverse interfacial metal-ligand coordination motifs that can significantly affect their physicochemical properties and functionalities. Among that, Cu nanoclusters have been gaining continuous increasing research attentions, thanks to the low cost, diversified structures, and superior catalytic performance for various reactions. In this review, we first summarize the recent progress regarding the synthetic methods of atomically precise Cu nanoclusters and the coordination modes between Cu and several typical ligands and then discuss the catalytic applications of these Cu nanoclusters with some explicit examples to explain the atomical-level structure-performance relationship. Finally, the current challenges and future research perspectives with some critical thoughts are elaborated. We hope this review can not only provide a whole picture of the current advances regarding the synthesis and catalytic applications of atomically precise Cu nanoclusters, but also points out some future research visions in this rapidly booming field.
Collapse
Affiliation(s)
- Mengyao Chen
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Chengyu Guo
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Lubing Qin
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Lei Wang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Liang Qiao
- Petrochemical Research Institute, PetroChina Company Limited, Beijing, 102206, People's Republic of China
| | - Kebin Chi
- Petrochemical Research Institute, PetroChina Company Limited, Beijing, 102206, People's Republic of China
| | - Zhenghua Tang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China.
- Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education, Harbin, 150001, People's Republic of China.
| |
Collapse
|
6
|
Sagadevan A, Murugesan K, Bakr OM, Rueping M. Copper nanoclusters: emerging photoredox catalysts for organic bond formations. Chem Commun (Camb) 2024; 60:13858-13866. [PMID: 39530552 DOI: 10.1039/d4cc04774e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Advancements in fine chemical synthesis and drug discovery continuously demand the development of new and more efficient catalytic systems. In this regard, numerous transition metal-based catalysts have been developed and successfully applied in industrial processes. However, the need for innovative catalyst systems to further enhance the efficiency of chemical transformations and industrial applications persists. Metal nanoclusters (NCs) represent a distinct class of ultra-small nanoparticles (<3 nm) characterized by a precise number of metal atoms coordinated with a defined number of ligands. This structure confers abundant unsaturated active sites and unique electronic and optical properties, setting them apart from conventional nanoparticles or bulk metals. The well-defined structure and monodisperse nature of NCs make them particularly attractive for catalytic applications. Among these, copper-based nanoclusters have emerged as versatile and sustainable catalysts for challenging organic bond-forming reactions. Their unique properties, including natural abundance, accessible oxidation states, diverse ligand architectures, and strong photophysical characteristics, contribute to their growing prominence in this field. In this review, we discuss the photocatalytic activities of Cu-based nanoclusters, focusing on their applications in cross-coupling reactions (C-C and C-N), click reactions, multicomponent couplings, and oxidation reactions.
Collapse
Affiliation(s)
- Arunachalam Sagadevan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Kathiravan Murugesan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Osman M Bakr
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
7
|
Zhao Y, Zhu ZM, Fan W, Zhu W, Yang JJ, Tao Y, Fei W, Bi H, Zhang S, Li MB. Photosynthesis of Au 8Cu 6 nanocluster for photocatalysis in oxidative functionalization of alkynes. Nat Commun 2024; 15:9632. [PMID: 39511201 PMCID: PMC11543986 DOI: 10.1038/s41467-024-54030-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024] Open
Abstract
Ligand-protected metal nanoclusters provide an ideal platform for investigating photoredox catalysis. The central challenge is balancing their stability and catalytic activity. Here we show a photochemical reduction-oxidation cascade method for synthesizing an Au8Cu6 nanocluster, which features a robust structure and active surface. Photoredox catalytic activity of Au8Cu6 is developed for the functionalization of alkynes under oxidative conditions. Mechanism studies based on the precise structure reveal the catalytic process of the Au8Cu6 nanocluster. Oxidant-dependent selectivity of Au8Cu6 catalysis is developed for chemodivergent synthesis of mono- and di-functionalized products in high efficiency. The results will stimulate more research on metal nanocluster synthesis and catalysis.
Collapse
Affiliation(s)
- Yan Zhao
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, P. R. China
| | - Ze-Min Zhu
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, P. R. China
| | - Weigang Fan
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, P. R. China
| | - Wanli Zhu
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, P. R. China
| | - Jing-Jing Yang
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, P. R. China
| | - Yang Tao
- School of Materials Science and Engineering, Anhui University, Hefei, P. R. China
| | - Wenwen Fei
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, P. R. China
| | - Hong Bi
- School of Materials Science and Engineering, Anhui University, Hefei, P. R. China
| | - Sheng Zhang
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, P. R. China.
| | - Man-Bo Li
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Hefei, P. R. China.
| |
Collapse
|
8
|
Zhang Y, Liu J, Xu Y, Xie C, Wang S, Yao X. Design and regulation of defective electrocatalysts. Chem Soc Rev 2024; 53:10620-10659. [PMID: 39268976 DOI: 10.1039/d4cs00217b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Electrocatalysts are the key components of electrochemical energy storage and conversion devices. High performance electrocatalysts can effectively reduce the energy barrier of the chemical reactions, thereby improving the conversion efficiency of energy devices. The electrocatalytic reaction mainly experiences adsorption and desorption of molecules (reactants, intermediates and products) on a catalyst surface, accompanied by charge transfer processes. Therefore, surface control of electrocatalysts plays a pivotal role in catalyst design and optimization. In recent years, many studies have revealed that the rational design and regulation of a defect structure can result in rearrangement of the atomic structure on the catalyst surface, thereby efficaciously promoting the electrocatalytic performance. However, the relationship between defects and catalytic properties still remains to be understood. In this review, the types of defects, synthesis methods and characterization techniques are comprehensively summarized, and then the intrinsic relationship between defects and electrocatalytic performance is discussed. Moreover, the application and development of defects are reviewed in detail. Finally, the challenges existing in defective electrocatalysts are summarized and prospected, and the future research direction is also suggested. We hope that this review will provide some principal guidance and reference for researchers engaged in defect and catalysis research, better help researchers understand the research status and development trends in the field of defects and catalysis, and expand the application of high-performance defective electrocatalysts to the field of electrocatalytic engineering.
Collapse
Affiliation(s)
- Yiqiong Zhang
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, Hunan, 410114, P. R. China.
| | - Jingjing Liu
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha, Hunan, 410114, P. R. China.
| | - Yangfan Xu
- School of Advanced Energy, Sun Yat-Sen University (Shenzhen), Shenzhen, Guangdong 518107, P. R. China.
| | - Chao Xie
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, P. R. China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Xiangdong Yao
- School of Advanced Energy, Sun Yat-Sen University (Shenzhen), Shenzhen, Guangdong 518107, P. R. China.
| |
Collapse
|
9
|
Bodiuzzaman M, Murugesan K, Yuan P, Maity B, Sagadevan A, Malenahalli H N, Wang S, Maity P, Alotaibi MF, Jiang DE, Abulikemu M, Mohammed OF, Cavallo L, Rueping M, Bakr OM. Modulating Decarboxylative Oxidation Photocatalysis by Ligand Engineering of Atomically Precise Copper Nanoclusters. J Am Chem Soc 2024; 146:26994-27005. [PMID: 39297671 DOI: 10.1021/jacs.4c08688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Copper nanoclusters (Cu NCs) characterized by their well-defined electronic and optical properties are an ideal platform for organic photocatalysis and exploring atomic-level behaviors. However, their potential as greener, efficient catalysts for challenging reactions like decarboxylative oxygenation under mild conditions remains unexplored. Herein, we present Cu13(Nap)3(PPh3)7H10 (hereafter Cu13Nap), protected by 1-naphthalene thiolate (Nap), which performs well in decarboxylative oxidation (90% yield) under photochemical conditions. In comparison, the isostructural Cu13(DCBT)3(PPh3)7H10 (hereafter Cu13DCBT), stabilized by 2,4-dichlorobenzenethiolate (DCBT), yields only 28%, and other previously reported Cu NCs (Cu28, Cu29, Cu45, Cu57, and Cu61) yield in the range of 6-18%. The introduction of naphthalene thiolate to the surface of Cu13 NCs influences their electronic structure and charge transfer in the ligand shell, enhancing visible light absorption and catalytic performance. Density functional theory (DFT) and experimental evidence suggest that the reaction proceeds primarily through an energy transfer mechanism. The energy transfer pathway is uncommon in the context of previous reports for decarboxylative oxidation reactions. Our findings suggest that strategically manipulating ligands holds significant potential for creating composite active sites on atomically precise copper NCs, resulting in enhanced catalytic efficacy and selectivity across various challenging reactions.
Collapse
Affiliation(s)
- Mohammad Bodiuzzaman
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Kathiravan Murugesan
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Peng Yuan
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Bholanath Maity
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Arunachalam Sagadevan
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Naveen Malenahalli H
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Song Wang
- Hefei National Research Center for Physical Sciences at the Microscale, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Partha Maity
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mohammed F Alotaibi
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - De-En Jiang
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee 37235-1604, United States
| | - Mutalifu Abulikemu
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Omar F Mohammed
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Osman M Bakr
- Center for Renewable Energy and Storage Technologies (CREST), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
10
|
Huang X, Xiao Y, Li Y, Han Q, Fang W, He L, Tian F, Chen R. Understanding the Roles of Thiophenol-Ligated Ag-Based Nanoclusters on TiO 2 during the Catalytic Hydrogenation of Nitroarenes. Inorg Chem 2024; 63:17176-17187. [PMID: 39222386 DOI: 10.1021/acs.inorgchem.4c02878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Elucidating the correlations between the core structure of atomically precise nanoclusters and their catalytic activities is fundamentalfor exploring highly efficient nanocatalysts. Herein, a series of Ag-based nanoclusters protected by 2,4-dimethylphenylthiophenol (specifically Ag4Pd2(SPhMe2)8 and Ag24M(SPhMe2)18 where M = Ag, Pd, and Pt) were synthesized and deposited on TiO2 supports as heterogeneous catalysts for the selective hydrogenation of nitroarenes with NaBH4 as the reductant. It was found that Ag4Pd2(SPhMe2)8 could spontaneously lose its ligands during catalysis, leading to the formation of polydispersed AgPd nanoparticles. This transformation endows the system with extraordinary activity for driving the hydrogenation of nitroarenes. However, the Ag24M (M = Ag, Pd, and Pt) systems, maintain their core structures during catalysis. They follow the generally reported ligand-mediated hydride-involved process, with catalytic activities depending on the central atom (Pt > Pd > Ag), which affects the hydride transferred from the nanoclusters to the reactant to regulate the catalysis.
Collapse
Affiliation(s)
- Xiaofei Huang
- Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Yutong Xiao
- Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 230031, PR China
| | - Yulin Li
- Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Qingwen Han
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, PR China
| | - Wanggang Fang
- Hefei General Machinery Research Institute Co., Ltd., Hefei 230031, PR China
| | - Liqing He
- Hefei General Machinery Research Institute Co., Ltd., Hefei 230031, PR China
| | - Fan Tian
- Key Laboratory of Green Chemical Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Rong Chen
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China
| |
Collapse
|
11
|
Yang T, Jia J, Xiong L, Jin S, Zhu M. [Cu 58(SeC 6H 5) 24(Dppe) 6Se 16] 2+ assembled from tetrahedra and octahedra: synthesis, characterization, structure and catalytic properties. Chem Commun (Camb) 2024; 60:9614-9617. [PMID: 39150075 DOI: 10.1039/d4cc03288h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Herein, we successfully synthesized a copper nanocluster, [Cu58(SeC6H5)24(Dppe)6Se16]2+. The Cu58 features a tetrahedral Cu4 core, surrounded by tetrahedral Se4 and octahedral Cu6 subunits, and further stabilized by Cu3Se3, Cu3(SeR)3, and DppeCu2 staples, which can be interpreted as an assembly of tetrahedral and octahedral units. Density functional theory (DFT) calculations were employed to investigate the electronic structure of Cu58. This nanocluster demonstrates excellent catalytic properties in copper-catalyzed [3+2] azide-alkyne cycloaddition (CuAAC) reactions. Additionally, Cu58 enriches the structural diversity of copper-based nanoclusters, providing valuable insights for future structural predictions.
Collapse
Affiliation(s)
- Tao Yang
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Anhui 230601, P. R. China.
| | - Jianmei Jia
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Anhui 230601, P. R. China.
| | - Lin Xiong
- School of Food and Chemical Engineering, Shaoyang University, Shaoyang, 422000, P. R. China.
| | - Shan Jin
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Anhui 230601, P. R. China.
| | - Manzhou Zhu
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Anhui University, Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, Department of Chemistry and Center for Atomic Engineering of Advanced Materials, Anhui University, Anhui 230601, P. R. China.
| |
Collapse
|
12
|
Biswas S, Pal A, Jena MK, Hossain S, Sakai J, Das S, Sahoo B, Pathak B, Negishi Y. Luminescent Hydride-Free [Cu 7(SC 5H 9) 7(PPh 3) 3] Nanocluster: Facilitating Highly Selective C-C Bond Formation. J Am Chem Soc 2024. [PMID: 38979882 DOI: 10.1021/jacs.4c05678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Amidst burgeoning interest, atomically precise copper nanoclusters (Cu NCs) have emerged as a remarkable class of nanomaterials distinguished by their unparalleled reactivity. Nonetheless, the synthesis of hydride-free Cu NCs and their role as stable catalysts remain infrequently explored. Here, we introduce a facile synthetic approach to fabricate a hydride-free [Cu7(SC5H9)7(PPh3)3] (Cu7) NC and delineate its photophysical properties intertwined with their structural configuration. Moreover, the utilization of its photophysical properties in a photoinduced C-C coupling reaction demonstrates remarkable specificity toward cross-coupling products with high yields. The combined experimental and theoretical investigation reveals a nonradical mechanistic pathway distinct from its counterparts, offering promising prospects for designing hydride-free Cu NC catalysts in the future and unveiling the selectivity of the hydride-free [Cu7(SC5H9)7(PPh3)3] NC in photoinduced Sonogashira C-C coupling through a polar reaction pathway.
Collapse
Affiliation(s)
- Sourav Biswas
- Department of Applied Chemistry, Tokyo University of Science,1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Amit Pal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Milan Kumar Jena
- Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - Sakiat Hossain
- Research Institute for Science & Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Jin Sakai
- Department of Applied Chemistry, Tokyo University of Science,1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Saikat Das
- Research Institute for Science & Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Basudev Sahoo
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala 695551, India
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore, Indore, Madhya Pradesh 453552, India
| | - Yuichi Negishi
- Department of Applied Chemistry, Tokyo University of Science,1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
- Research Institute for Science & Technology, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
| |
Collapse
|
13
|
Alamer B, Sagadevan A, Bodiuzzaman M, Murugesan K, Alsharif S, Huang RW, Ghosh A, Naveen MH, Dong C, Nematulloev S, Yin J, Shkurenko A, Abulikemu M, Dong X, Han Y, Eddaoudi M, Rueping M, Bakr OM. Planar Core and Macrocyclic Shell Stabilized Atomically Precise Copper Nanocluster Catalyst for Efficient Hydroboration of C-C Multiple Bond. J Am Chem Soc 2024; 146:16295-16305. [PMID: 38816788 PMCID: PMC11177319 DOI: 10.1021/jacs.4c05077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
Atomically precise metal nanoclusters (NCs) have become an important class of catalysts due to their catalytic activity, high surface area, and tailored active sites. However, the design and development of bond-forming reaction catalysts based on copper NCs are still in their early stages. Herein, we report the synthesis of an atomically precise copper nanocluster with a planar core and unique shell, [Cu45(TBBT)29(TPP)4(C4H11N)2H14]2+ (Cu45) (TBBT: 4-tert-butylbenzenethiol; TPP: triphenylphosphine), in high yield via a one-pot reduction method. The resulting structurally well-defined Cu45 is a highly efficient catalyst for the hydroboration reaction of alkynes and alkenes. Mechanistic studies show that a single-electron oxidation of the in situ-formed ate complex enables the hydroboration via the formation of boryl-centered radicals under mild conditions. This work demonstrates the promise of tailored copper nanoclusters as catalysts for C-B heteroatom bond-forming reactions. The catalysts are compatible with a wide range of alkynes and alkenes and functional groups for producing hydroborated products.
Collapse
Affiliation(s)
- Badriah Alamer
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
- Department
of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Arunachalam Sagadevan
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Mohammad Bodiuzzaman
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Kathiravan Murugesan
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Salman Alsharif
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Ren-Wu Huang
- Henan
Key Laboratory of Crystalline Molecular Functional Materials, Green
Catalysis Center, College of Chemistry, Henan International Joint
Laboratory of Tumor Theranostic Cluster Materials, Zhengzhou University, Zhengzhou 450001, China
| | - Atanu Ghosh
- Institute
for Organic and Bimolecular Chemistry, Georg-August-University
Goettingen Tammannstr, 237077 Goettingen, Germany
| | - Malenahalli H. Naveen
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Chunwei Dong
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Saidkhodzha Nematulloev
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Jun Yin
- Department
of Applied Physics, The Hong Kong Polytechnic
University, Hung Hom, Kowloon, 999077 Hong Kong, P. R. China
| | - Aleksander Shkurenko
- Division
of Physical Sciences and Engineering and Functional Materials Design,
Discovery and Development Research Group (FMD3), Advanced Membranes
and Porous Materials Center, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mutalifu Abulikemu
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Xinglong Dong
- Advanced
Membranes and Porous Materials Center, Physical Sciences and Engineering
Division, King Abdullah University of Science
and Technology (KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Yu Han
- Advanced
Membranes and Porous Materials Center, Physical Sciences and Engineering
Division, King Abdullah University of Science
and Technology (KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Mohamed Eddaoudi
- Division
of Physical Sciences and Engineering and Functional Materials Design,
Discovery and Development Research Group (FMD3), Advanced Membranes
and Porous Materials Center, King Abdullah
University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Magnus Rueping
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| | - Osman M. Bakr
- KAUST
Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Saudi
Arabia
| |
Collapse
|
14
|
Liu LJ, Zhang MM, Deng Z, Yan LL, Lin Y, Phillips DL, Yam VWW, He J. NIR-II emissive anionic copper nanoclusters with intrinsic photoredox activity in single-electron transfer. Nat Commun 2024; 15:4688. [PMID: 38824144 PMCID: PMC11144245 DOI: 10.1038/s41467-024-49081-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 05/20/2024] [Indexed: 06/03/2024] Open
Abstract
Ultrasmall copper nanoclusters have recently emerged as promising photocatalysts for organic synthesis, owing to their exceptional light absorption ability and large surface areas for efficient interactions with substrates. Despite significant advances in cluster-based visible-light photocatalysis, the types of organic transformations that copper nanoclusters can catalyze remain limited to date. Herein, we report a structurally well-defined anionic Cu40 nanocluster that emits in the second near-infrared region (NIR-II, 1000-1700 nm) after photoexcitation and can conduct single-electron transfer with fluoroalkyl iodides without the need for external ligand activation. This photoredox-active copper nanocluster efficiently catalyzes the three-component radical couplings of alkenes, fluoroalkyl iodides, and trimethylsilyl cyanide under blue-LED irradiation at room temperature. A variety of fluorine-containing electrophiles and a cyanide nucleophile can be added onto an array of alkenes, including styrenes and aliphatic olefins. Our current work demonstrates the viability of using readily accessible metal nanoclusters to establish photocatalytic systems with a high degree of practicality and reaction complexity.
Collapse
Affiliation(s)
- Li-Juan Liu
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- Chemistry and Chemical Engineering of Guangdong Laboratory, Shantou, China
| | - Mao-Mao Zhang
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Ziqi Deng
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | - Liang-Liang Yan
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China
- Institute of Molecular Functional Materials, The University of Hong Kong, Hong Kong, China
| | - Yang Lin
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
| | | | - Vivian Wing-Wah Yam
- Department of Chemistry, The University of Hong Kong, Hong Kong, China
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China
- Institute of Molecular Functional Materials, The University of Hong Kong, Hong Kong, China
| | - Jian He
- Department of Chemistry, The University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Hong Kong, China.
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, China.
| |
Collapse
|
15
|
Ghosh A, Sagadevan A, Murugesan K, Nastase SAF, Maity B, Bodiuzzaman M, Shkurenko A, Hedhili MN, Yin J, Mohammed OF, Eddaoudi M, Cavallo L, Rueping M, Bakr OM. Multiple neighboring active sites of an atomically precise copper nanocluster catalyst for efficient bond-forming reactions. MATERIALS HORIZONS 2024; 11:2494-2505. [PMID: 38477151 DOI: 10.1039/d4mh00098f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Atomically precise copper nanoclusters (NCs) are an emerging class of nanomaterials for catalysis. Their versatile core-shell architecture opens the possibility of tailoring their catalytically active sites. Here, we introduce a core-shell copper nanocluster (CuNC), [Cu29(StBu)13Cl5(PPh3)4H10]tBuSO3 (StBu: tert-butylthiol; PPh3: triphenylphosphine), Cu29NC, with multiple accessible active sites on its shell. We show that this nanocluster is a versatile catalyst for C-heteroatom bond formation (C-O, C-N, and C-S) with several advantages over previous Cu systems. When supported, the cluster can also be reused as a heterogeneous catalyst without losing its efficiency, making it a hybrid homogeneous and heterogeneous catalyst. We elucidated the atomic-level mechanism of the catalysis using density functional theory (DFT) calculations based on the single crystal structure. We found that the cooperative action of multiple neighboring active sites is essential for the catalyst's efficiency. The calculations also revealed that oxidative addition is the rate-limiting step that is facilitated by the neighboring active sites of the Cu29NC, which highlights a unique advantage of nanoclusters over traditional copper catalysts. Our results demonstrate the potential of nanoclusters for enabling the rational atomically precise design and investigation of multi-site catalysts.
Collapse
Affiliation(s)
- Atanu Ghosh
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Arunachalam Sagadevan
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Kathiravan Murugesan
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Stefan Adrian F Nastase
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Bholanath Maity
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Mohammad Bodiuzzaman
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Aleksander Shkurenko
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mohamed Nejib Hedhili
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jun Yin
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, Hong Kong, China
| | - Omar F Mohammed
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Mohamed Eddaoudi
- Advanced Membranes and Porous Materials Center (AMPMC), Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Osman M Bakr
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
16
|
Chiu TH, Liao JH, Silalahi RPB, Pillay MN, Liu CW. Hydride-doped coinage metal superatoms and their catalytic applications. NANOSCALE HORIZONS 2024; 9:675-692. [PMID: 38507282 DOI: 10.1039/d4nh00036f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Superatomic constructs have been identified as a critical component of future technologies. The isolation of coinage metal superatoms relies on partially reducing metallic frameworks to accommodate the mixed valent state required to generate a superatom. Controlling this reduction requires careful consideration in reducing the agent, temperature, and the ligand that directs the self-assembly process. Hydride-based reducing agents dominate the synthetic wet chemical routes to coinage metal clusters. However, within this category, a unique subset of superatoms that retain a hydride/s within the nanocluster post-reduction have emerged. These stable constructs have only recently been characterized in the solid state and have highly unique structural features and properties. The difficulty in identifying the position of hydrides in electron-rich metallic constructs requires the combination and correlation of several analytical methods, including ESI-MS, NMR, SCXRD, and DFT. This text highlights the importance of NMR in detecting hydride environments in these superatomic systems. Added to the complexity of these systems is the dual nature of the hydride, which can act as metallic hydrogen in some cases, resulting in entirely different physical properties. This review includes all hydride-doped superatomic nanoclusters emphasizing synthesis, structure, and catalytic potential.
Collapse
Affiliation(s)
- Tzu-Hao Chiu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - Jian-Hong Liao
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - Rhone P Brocha Silalahi
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - Michael N Pillay
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| | - C W Liu
- Department of Chemistry, National Dong Hwa University, Hualien 97401, Taiwan, Republic of China.
| |
Collapse
|
17
|
Wang J, Ma A, Ren Y, Shen X, Wang Y, Song C, Wang S. An Au 5Ag 12(SR) 9(dppf) 4 alloy nanocluster: structural determination and optical property and photothermal conversion investigation. NANOSCALE 2024. [PMID: 38634772 DOI: 10.1039/d4nr00312h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Photothermal conversion has garnered significant attention due to its potential for efficient energy conversion and application in targeted therapies. However, controlling photothermal properties at the atomic level remains a challenge in current materials synthesis. In this study, we report the synthesis and structural determination of a phosphine and mercaptan co-protected Au5Ag12(SR)9(dppf)4 (Au5Ag12) nanocluster with an extremely low quantum yield (∼0%). For comparative purposes, we synthesized three alloy nanoclusters of similar size. Notably, Au5Ag12 demonstrates a remarkably superior photothermal conversion performance, significantly outperforming the other clusters. We investigated this variance from both absorption and emission perspectives. This research not only opens new avenues for the application of clusters with extremely low quantum yields, but also provides experimental evidence for understanding the photothermal conversion properties of cluster materials at the atomic level.
Collapse
Affiliation(s)
- Jiawei Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Along Ma
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yonggang Ren
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Xuekairui Shen
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Yifei Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Caixia Song
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
| | - Shuxin Wang
- College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China.
- Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
18
|
Das AK, Biswas S, Pal A, Manna SS, Sardar A, Mondal PK, Sahoo B, Pathak B, Mandal S. A thiolated copper-hydride nanocluster with chloride bridging as a catalyst for carbonylative C-N coupling of aryl amines under mild conditions: a combined experimental and theoretical study. NANOSCALE 2024; 16:3583-3590. [PMID: 38268470 DOI: 10.1039/d3nr05912j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Atomically precise copper nanoclusters (Cu NCs), an emerging class of nanomaterials, have garnered significant attention owing to their versatile core-shell architecture and their potential applications in catalytic reactions. In this study, we present a straightforward synthesis strategy for [Cu29(StBu)12(PPh3)4Cl6H10][BF4] (Cu29) NCs and explore their catalytic activity in the carbonylative C-N coupling reaction involving aromatic amines and N-heteroarenes with dialkyl azodicarboxylates. Through a combination of experimental investigations and density functional theory studies, we elucidate the radical mechanisms at play. The crucial step in the catalytic process is identified as the decomposition of diisopropyl azodicarboxylates on the surface of Cu29 NCs, leading to the generation of oxyacyl radicals and the liberation of nitrogen gas. Subsequently, an oxyacyl radical abstracts a hydrogen atom from aniline, initiating the formation of an aminyl radical. Finally, the aminyl radical reacts with another oxyacyl radical, culminating in the synthesis of the desired carbamate product. This detailed analysis provides insights into the intricate catalytic pathways of Cu29 NCs, shedding light on their potential for catalyzing carbonylative C-N coupling reactions.
Collapse
Affiliation(s)
- Anish Kumar Das
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India.
| | - Sourav Biswas
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India.
| | - Amit Pal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India.
| | - Surya Sekhar Manna
- Department of Chemistry, Indian Institute of Technology Indore, Madhya Pradesh 453552, India.
| | - Avirup Sardar
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India.
| | | | - Basudev Sahoo
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India.
| | - Biswarup Pathak
- Department of Chemistry, Indian Institute of Technology Indore, Madhya Pradesh 453552, India.
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala 695551, India.
| |
Collapse
|
19
|
Zhou H, Duan T, Lin Z, Yang T, Deng H, Jin S, Pei Y, Zhu M. Total Structure, Structural Transformation and Catalytic Hydrogenation of [Cu 41 (SC 6 H 3 F 2 ) 15 Cl 3 (P(PhF) 3 ) 6 (H) 25 ] 2- Constructed from Twisted Cu 13 Units. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307085. [PMID: 38064120 PMCID: PMC10870033 DOI: 10.1002/advs.202307085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/16/2023] [Indexed: 02/17/2024]
Abstract
Herein, a remarkable achievement in the synthesis and characterization of an atomically precise copper-hydride nanocluster, [Cu41 (SC6 H3 F2 )15 Cl3 (P(PhF)3 )6 (H)25 ]2- via a mild one-pot reaction is presented. Through X-ray crystallography analysis, it is revealed that [Cu41 (SC6 H3 F2 )15 Cl3 (P(PhF)3 )6 (H)25 ]2- exhibits a unique shell-core-shell structure. The inner Cu29 kernel is composed of three twisted Cu13 units, connected through Cu4 face sharing. Surrounding the metal core, two Cu6 metal shells, resembling a protective sandwich structure are observed. This arrangement, along with intracluster π···π interactions and intercluster C─H···F─C interactions, contributes to the enhanced stability of [Cu41 (SC6 H3 F2 )15 Cl3 (P(PhF)3 )6 (H)25 ]2- . The presence, number, and location of hydrides within the nanocluster are established through a combination of experimental and density functional theory investigations. Notably, the addition of a phosphine ligand triggers a fascinating nanocluster-to-nanocluster transformation in [Cu41 (SC6 H3 F2 )15 Cl3 (P(PhF)3 )6 (H)25 ]2- , resulting in the generation of two nanoclusters, [Cu14 (SC6 H3 F2 )3 (PPh3 )8 H10 ]+ and [Cu13 (SC6 H3 F2 )3 (P(PhF)3 )7 H10 ]0 . Furthermore, it is demonstrated that [Cu41 (SC6 H3 F2 )15 Cl3 (P(PhF)3 )6 (H)25 ]2- exhibits catalytic activity in the hydrogenation of nitroarenes. This intriguing nanocluster provides a unique opportunity to explore the assembly of M13 units, similar to other coinage metal nanoclusters, and investigate the nanocluster-to-nanocluster transformation in phosphine and thiol ligand co-protected copper nanoclusters.
Collapse
Affiliation(s)
- Huimin Zhou
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced MaterialsKey Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of EducationDepartment of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui UniversityHefeiAnhui230601China
| | - Tengfei Duan
- Department of ChemistryKey Laboratory of Environmentally Friendly Chemistry and Applications of MOEXiangtan UniversityXiangtanHunan411105China
| | - Zidong Lin
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced MaterialsKey Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of EducationDepartment of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui UniversityHefeiAnhui230601China
| | - Tao Yang
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced MaterialsKey Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of EducationDepartment of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui UniversityHefeiAnhui230601China
| | - Huijuan Deng
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced MaterialsKey Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of EducationDepartment of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui UniversityHefeiAnhui230601China
| | - Shan Jin
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced MaterialsKey Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of EducationDepartment of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui UniversityHefeiAnhui230601China
| | - Yong Pei
- Department of ChemistryKey Laboratory of Environmentally Friendly Chemistry and Applications of MOEXiangtan UniversityXiangtanHunan411105China
| | - Manzhou Zhu
- Institutes of Physical Science and Information Technology and Centre for Atomic Engineering of Advanced MaterialsKey Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of EducationDepartment of Chemistry and Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui UniversityHefeiAnhui230601China
| |
Collapse
|
20
|
Biswas S, Das S, Negishi Y. Advances in Cu nanocluster catalyst design: recent progress and promising applications. NANOSCALE HORIZONS 2023; 8:1509-1522. [PMID: 37772632 DOI: 10.1039/d3nh00336a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
The quest for cleaner pathways to the production of fuels and chemicals from non-fossil feedstock, efficient transformation of raw materials to value-added chemicals under mild conditions, and control over the activity and selectivity of chemical processes are driving the state-of-the-art approaches to the construction and precise chemical modification of sustainable nanocatalysts. As a burgeoning category of atomically precise noble metal nanoclusters, copper nanoclusters (Cu NCs) benefitting from their exclusive structural architecture, ingenious designability of active sites and high surface-to-volume ratio qualify as potential rationally-designed catalysts. In this Minireview, we present a detailed coverage of the optimal design strategies and controlled synthesis of Cu NC catalysts with a focus on tuning of active sites at the atomic level, the implications of cluster size, shape and structure, the ligands and heteroatom doping on catalytic activity, and reaction scope ranging from chemical catalysis to emerging photocatalysis and electrocatalysis.
Collapse
Affiliation(s)
- Sourav Biswas
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
| | - Saikat Das
- Research Institute for Science & Technology, Tokyo University of Science, Tokyo 162-8601, Japan.
| | - Yuichi Negishi
- Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan.
- Research Institute for Science & Technology, Tokyo University of Science, Tokyo 162-8601, Japan.
| |
Collapse
|
21
|
Luo GG, Pan ZH, Han BL, Dong GL, Deng CL, Azam M, Tao YW, He J, Sun CF, Sun D. Total Structure, Electronic Structure and Catalytic Hydrogenation Activity of Metal-Deficient Chiral Polyhydride Cu 57 Nanoclusters. Angew Chem Int Ed Engl 2023; 62:e202306849. [PMID: 37469101 DOI: 10.1002/anie.202306849] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/16/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023]
Abstract
Accurate identifying and in-depth understanding of the defect sites in a working nanomaterial could hinge on establishing specific defect-activity relationships. Yet, atomically precise coinage-metal nanoclusters (NCs) possessing surface vacancy defects are scarce primarily owing to challenges in the synthesis and isolation of such defective NCs. Herein we report a mixed-ligand strategy to synthesizing an intrinsically chiral and metal-deficient copper hydride-rich NC [Cu57 H20 (PET)36 (TPP)4 ]+ (Cu57 H20 ). Its total structure (including hydrides) and electronic structure are well established by combined experimental and computational results. Crystal structure reveals Cu57 H20 features a cube-like Cu8 kernel embedded in a corner-missing metal-ligand shell of Cu49 (PET)36 (TPP)4 . Single Cu vacancy defect site occurs at one corner of the shell, evocative of mono-lacunary polyoxometalates. Theoretical calculations demonstrate that the above-mentioned point vacancy causes one surface hydride exposed as an interfacial capping μ3 -H- , which is accessible in chemical reaction, as proved by deuterated experiment. Moreover, Cu57 H20 shows catalytic activity in the hydrogenation of nitroarene. The success of this work opens the way for the research on well-defined chiral metal-deficient Cu and other metal NCs, including exploring their application in asymmetrical catalysis.
Collapse
Affiliation(s)
- Geng-Geng Luo
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Zhong-Hua Pan
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Bao-Liang Han
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Guang-Lei Dong
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Cheng-Long Deng
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Mohammad Azam
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Yun-Wen Tao
- Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX, 75275-0314, USA
| | - Jiao He
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Cun-Fa Sun
- College of Materials Science and Engineering, Huaqiao University, Xiamen, 361021, P. R. China
| | - Di Sun
- School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|