1
|
Dhara D, Hill AC, Ramesh A, Wood MJA, El-Sagheer AH, Brown T. Synthesis, Biophysical and Biological Evaluation of Splice-Switching Oligonucleotides with Multiple LNA-Phosphothiotriester Backbones. J Am Chem Soc 2024; 146:29773-29781. [PMID: 39401255 PMCID: PMC11528411 DOI: 10.1021/jacs.4c11402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/17/2024]
Abstract
Polyanionic antisense oligonucleotides hold great promise as RNA targeting drugs but issues with bioavailability hinder their development. Uncharged phosphorus-based backbones are promising alternatives but robust methods to produce them are limited. We report the synthesis and properties of oligonucleotides containing charge-neutral LNA alkyl phosphothiotriester backbones combined with 2'-O-methyl phosphorothioate nucleotides for therapeutic applications. The nature of the triester alkyl group dictates the success of solid-phase synthesis; tertiary alkyl groups are lost during the P(III) oxidation step, whereas primary alkyl groups are partially cleaved during deprotection. In contrast, oligonucleotides containing secondary phosphothiotriester linkages are stable, and large numbers of triesters can be incorporated. The modified oligonucleotides have excellent duplex stability with complementary RNA and exhibit strong nuclease resistance. To expand synthetic flexibility, oligonucleotides containing multiple internal alkynyl phosphothiotriesters can be conjugated to lipids, carbohydrates, or small molecules through CuAAC click chemistry. Oligonucleotides containing LNA-THP phosphothiotriesters exhibit high levels of pre-mRNA splice switching in eukaryotic cells.
Collapse
Affiliation(s)
- Debashis Dhara
- Department
of Chemistry, University of Oxford, Chemistry
Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| | - Alyssa C. Hill
- Department
of Paediatrics, Institute of Developmental and Regenerative Medicine
(IDRM), University of Oxford, Oxford OX3 7TY, U.K.
| | - Abinaya Ramesh
- Department
of Paediatrics, Institute of Developmental and Regenerative Medicine
(IDRM), University of Oxford, Oxford OX3 7TY, U.K.
| | - Matthew J. A. Wood
- Department
of Paediatrics, Institute of Developmental and Regenerative Medicine
(IDRM), University of Oxford, Oxford OX3 7TY, U.K.
| | - Afaf H. El-Sagheer
- Department
of Chemistry, University of Oxford, Chemistry
Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K.
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Tom Brown
- Department
of Chemistry, University of Oxford, Chemistry
Research Laboratory, 12 Mansfield Road, Oxford OX1 3TA, U.K.
| |
Collapse
|
2
|
Sabat N, Stämpfli A, Hanlon S, Bisagni S, Sladojevich F, Püntener K, Hollenstein M. Template-dependent DNA ligation for the synthesis of modified oligonucleotides. Nat Commun 2024; 15:8009. [PMID: 39271668 PMCID: PMC11399401 DOI: 10.1038/s41467-024-52141-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
Chemical modification of DNA is a common strategy to improve the properties of oligonucleotides, particularly for therapeutics and nanotechnology. Existing synthetic methods essentially rely on phosphoramidite chemistry or the polymerization of nucleoside triphosphates but are limited in terms of size, scalability, and sustainability. Herein, we report a robust alternative method for the de novo synthesis of modified oligonucleotides using template-dependent DNA ligation of shortmer fragments. Our approach is based on the fast and scaled accessibility of chemically modified shortmer monophosphates as substrates for the T3 DNA ligase. This method has shown high tolerance to chemical modifications, flexibility, and overall efficiency, thereby granting access to a broad range of modified oligonucleotides of different lengths (20 → 120 nucleotides). We have applied this method to the synthesis of clinically relevant antisense drugs and ultramers containing diverse modifications. Furthermore, the designed chemoenzymatic approach has great potential for diverse applications in therapeutics and biotechnology.
Collapse
Affiliation(s)
- Nazarii Sabat
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France
| | - Andreas Stämpfli
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, Switzerland
| | - Steven Hanlon
- Pharmaceutical Division, Synthetic Molecules Technical Development, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, Switzerland
| | - Serena Bisagni
- Pharmaceutical Division, Synthetic Molecules Technical Development, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, Switzerland
| | - Filippo Sladojevich
- Pharma Research and Early Development, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, Switzerland
| | - Kurt Püntener
- Pharmaceutical Division, Synthetic Molecules Technical Development, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, Basel, Switzerland
| | - Marcel Hollenstein
- Institut Pasteur, Université Paris Cité, CNRS UMR3523, Department of Structural Biology and Chemistry, Laboratory for Bioorganic Chemistry of Nucleic Acids, 28, rue du Docteur Roux, 75724, Paris, Cedex 15, France.
| |
Collapse
|
3
|
Zharkov TD, Markov OV, Zhukov SA, Khodyreva SN, Kupryushkin MS. Influence of Combinations of Lipophilic and Phosphate Backbone Modifications on Cellular Uptake of Modified Oligonucleotides. Molecules 2024; 29:452. [PMID: 38257365 PMCID: PMC10818405 DOI: 10.3390/molecules29020452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Numerous types of oligonucleotide modifications have been developed since automated synthesis of DNA/RNA became a common instrument in the creation of synthetic oligonucleotides. Despite the growing number of types of oligonucleotide modifications under development, only a few of them and, moreover, their combinations have been studied widely enough in terms of their influence on the properties of corresponding NA constructions. In the present study, a number of oligonucleotides with combinations of 3'-end lipophilic (a single cholesteryl or a pair of dodecyl residues) and phosphate backbone modifications were synthesized. The influence of the combination of used lipophilic groups with phosphate modifications of various natures and different positions on the efficiency of cell penetration was evaluated. The obtained results indicate that even a couple of phosphate modifications are able to affect a set of oligonucleotide properties in a complex manner and can remarkably change cellular uptake. These data clearly show that the strategy of using different patterns of modification combinations has great potential for the rational design of oligonucleotide structures with desired predefined properties.
Collapse
Affiliation(s)
| | | | | | | | - Maxim S. Kupryushkin
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of RAS, Lavrentiev Ave. 8, 630090 Novosibirsk, Russia; (T.D.Z.); (O.V.M.); (S.A.Z.); (S.N.K.)
| |
Collapse
|