1
|
Timmann S, Feng Z, Alcarazo M. Recent Applications of Sulfonium Salts in Synthesis and Catalysis. Chemistry 2024; 30:e202402768. [PMID: 39282878 DOI: 10.1002/chem.202402768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Indexed: 11/06/2024]
Abstract
The use of sulfonium salts in organic synthesis has experienced a dramatic increase during the last years that can arguably be attributed to three main factors; the development of more direct and efficient synthetic methods that make easily available sulfonium reagents of a wide structural variety, their intrinsic thermal stability, which facilitates their structural modification, handling and purification even on large scale, and the recognition that their reactivity resembles that of hypervalent iodine compounds and therefore, they can be used as replacement of such reagents for most of their uses. This renewed interest has led to the improvement of already existing reactions, as well as to the discovery of unprecedented transformations; in particular, by the implementation of photocatalytic protocols. This review aims to summarize the most recent advancements on the area focusing on the work published during and after 2020. The scope of the methods developed will be highlighted and their limitations critically evaluated.
Collapse
Affiliation(s)
- Sven Timmann
- Institut für Organische und Biomolekulare Chemie, Georg-August University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Zeyu Feng
- Institut für Organische und Biomolekulare Chemie, Georg-August University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg-August University Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| |
Collapse
|
2
|
Ahunovych V, Klipkov AA, Bugera M, Tarasenko K, Trofymchuk S, Razhyk B, Boretskyi A, Stanko O, Panasiuk Y, Shablykin O, Al-Maali G, Lesyk D, Klymenko-Ulianov O, Horbatok K, Bodenchuk I, Kosach V, Borysko P, Kubyshkin V, Mykhailiuk PK. CF 3-Cyclobutanes: Synthesis, Properties, and Evaluation as a Unique tert-Butyl Group Analogue. JACS AU 2024; 4:4507-4517. [PMID: 39610719 PMCID: PMC11600199 DOI: 10.1021/jacsau.4c00864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/30/2024]
Abstract
Isosteric replacement of functional groups is an emerging strategy for optimizing bioactive molecules in drug discovery. tert-Butyl group is a particularly important moiety, yet its isosteric replacement with 1-trifluoromethyl-cyclobutyl group has been rather neglected. To enable the advance of this molecular fragment in drug discovery programs, we report the synthesis of over 30 small-molecule building blocks featuring the trifluoromethyl-cyclobutyl fragment, achieved by reacting sulfur tetrafluoride with cyclobutylcarboxylic acids on a gram-to-multigram scale. Furthermore, we characterized the structural properties of this group through X-ray analysis, studied its effect on acid-base transitions, and evaluated its Hammett parameters. Finally, we evaluated the replacement of tert-butyl with 1-trifluoromethyl-cyclobutyl in several bioactive compounds that represent commercial drugs and agrochemicals. Our findings indicate that while the trifluoromethyl-cyclobutyl group exhibited slightly larger steric size and moderately increased lipophilicity, it preserved the original mode of bioactivity in the examined cases and, in some cases, enhanced resistance to metabolic clearance.
Collapse
Affiliation(s)
- Volodymyr Ahunovych
- Enamine
Ltd, Winston Churchill st. 78, 02094 Kyiv, Ukraine
- Kukhar
Institute of Bioorganic Chemistry and Petrochemistry NAS of Ukraine, 02094 Kyiv, Ukraine
| | - Anton A. Klipkov
- Enamine
Ltd, Winston Churchill st. 78, 02094 Kyiv, Ukraine
- Kukhar
Institute of Bioorganic Chemistry and Petrochemistry NAS of Ukraine, 02094 Kyiv, Ukraine
| | - Maksym Bugera
- Enamine
Ltd, Winston Churchill st. 78, 02094 Kyiv, Ukraine
- Kukhar
Institute of Bioorganic Chemistry and Petrochemistry NAS of Ukraine, 02094 Kyiv, Ukraine
| | - Karen Tarasenko
- Enamine
Ltd, Winston Churchill st. 78, 02094 Kyiv, Ukraine
- Kukhar
Institute of Bioorganic Chemistry and Petrochemistry NAS of Ukraine, 02094 Kyiv, Ukraine
| | | | - Bohdan Razhyk
- Enamine
Ltd, Winston Churchill st. 78, 02094 Kyiv, Ukraine
| | | | - Oleh Stanko
- Enamine
Ltd, Winston Churchill st. 78, 02094 Kyiv, Ukraine
| | | | - Oleh Shablykin
- Enamine
Ltd, Winston Churchill st. 78, 02094 Kyiv, Ukraine
- Kukhar
Institute of Bioorganic Chemistry and Petrochemistry NAS of Ukraine, 02094 Kyiv, Ukraine
| | - Galeb Al-Maali
- Enamine
Ltd, Winston Churchill st. 78, 02094 Kyiv, Ukraine
- Institute
of Botany of the National Academy of Sciences of Ukraine, 02000 Kyiv, Ukraine
| | - Dmytro Lesyk
- Bienta, Winston Churchill st. 78, 02094 Kyiv, Ukraine
| | | | | | | | | | - Petro Borysko
- Bienta, Winston Churchill st. 78, 02094 Kyiv, Ukraine
| | | | - Pavel K. Mykhailiuk
- Enamine
Ltd, Winston Churchill st. 78, 02094 Kyiv, Ukraine
- Faculty
of Chemistry, Taras Shevchenko National
University of Kyiv, Volodymyrska
60, 01601 Kyiv, Ukraine
| |
Collapse
|
3
|
Gan Z, Chen J, Wang H, Xue Z, Chen Z, Zhang Y, Wang L, Zi H, Liu S, Shi L, Jin Y. Photoinduced Phosphoniumation of Aryl Halides and Arylthianthrenium Salts via an Electron Donor-Acceptor Complex. Org Lett 2024; 26:7751-7756. [PMID: 39235211 DOI: 10.1021/acs.orglett.4c02909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Owing to their remarkable practicality and utility, phosphonium salts have attracted substantial interest and are widely applied in critical areas, such as medicine, materials science, and catalysis. Herein, we developed a facile and photocatalyst/metal-free synthetic strategy for the preparation of phosphonium salts utilizing aryl halides/arylthianthrenium salts as aryl radical precursors. This approach is disclosed to undergo an efficient light-induced electron donor-acceptor pathway, facilitating the synthesis of a structurally diverse range of phosphonium salts.
Collapse
Affiliation(s)
- Ziyu Gan
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Jiajin Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Han Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Zhiyan Xue
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Ziyang Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Yongqiang Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Lifang Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Hui Zi
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Shuyang Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Lei Shi
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Yunhe Jin
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| |
Collapse
|
4
|
Hann JL, Lyall CL, Kociok-Köhn G, Faverio C, Pantoş GD, Lewis SE. Unusual Regio- and Chemoselectivity in Oxidation of Pyrroles and Indoles Enabled by a Thianthrenium Salt Intermediate. Angew Chem Int Ed Engl 2024; 63:e202405057. [PMID: 38830180 DOI: 10.1002/anie.202405057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/05/2024]
Abstract
A dearomative oxidation of pyrroles to Δ3-pyrrol-2-ones is described, which employs a sulfoxide as oxidant, in conjunction with a carboxylic acid anhydride and a Brønsted acid additive. 3-substituted pyrroles undergo regioselective oxidation to give the product isomer in which oxygen has been introduced at the more hindered position. Regioselectivity is rationalized by a proposed mechanism that proceeds by initial thianthrenium introduction at the less-hindered pyrrole α-position, followed by distal attack of an oxygen nucleophile and subsequent elimination of thianthrene. The same reaction conditions are also able to effect a chemoselective oxidation of indoles to indolin-3-ones and additionally of indolin-3-ones to 2-hydroxyindolin-3-ones. Here again, the regio- and chemoselectivities are rationalized through the intermediacy of a thianthrenium salt.
Collapse
Affiliation(s)
- Jodie L Hann
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Catherine L Lyall
- Research Facilities, University of Bath, Bath, BA2 7AY, United Kingdom
| | | | - Chiara Faverio
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - G Dan Pantoş
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Simon E Lewis
- Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom
- Institute of Sustainability and Climate Change, University of Bath, Bath, BA2 7AY, United Kingdom
| |
Collapse
|
5
|
Zhong LJ, Chen H, Shang X, Fan JH, Tang KW, Liu Y, Li JH. Photoredox Ring Opening 1,2-Alkylarylation of Alkenes with Sulfonium Salts Toward Thioether-Substituted Oxindoles. J Org Chem 2024; 89:8721-8733. [PMID: 38832808 DOI: 10.1021/acs.joc.4c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
A novel strategy for the difunctionalization of electron-deficient alkenes with aryl sulfonium salts to access remote sulfur-containing oxindole derivatives by using in situ-formed copper(I)-based complexes as a photoredox catalyst is presented. This method enables the generation of the C(sp3)-centered radicals through site selective cleavage of the C-S bond of aryl sulfonium salts under mild conditions. Moreover, the oxidation reactions of desired products provide a new strategy for the preparation of sulfoxide or sulfone-containing compounds. Importantly, this approach can be easily applied to late-stage modification of pharmaceuticals molecules.
Collapse
Affiliation(s)
- Long-Jin Zhong
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Hui Chen
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Xuan Shang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jian-Hong Fan
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Ke-Wen Tang
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Yu Liu
- Department of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology, Yueyang 414006, China
| | - Jin-Heng Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
6
|
van der Zee LJC, Hofman J, van Gaalen JM, Slootweg JC. Mechanistic studies on single-electron transfer in frustrated Lewis pairs and its application to main-group chemistry. Chem Soc Rev 2024; 53:4862-4876. [PMID: 38623621 PMCID: PMC11104263 DOI: 10.1039/d4cs00185k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Indexed: 04/17/2024]
Abstract
Advances in the field of frustrated Lewis pair (FLP) chemistry have led to the discovery of radical pairs, obtained by a single-electron transfer (SET) from the Lewis base to the Lewis acid. Radical pairs are intriguing for their potential to enable cooperative activation of challenging substrates (e.g., CH4, N2) in a homolytic fashion, as well as the exploration of novel radical reactions. In this review, we will cover the two known mechanisms of SET in FLPs-thermal and photoinduced-along with methods (i.e., CV, DFT, UV-vis) to predict the mechanism and to characterise the involved electron donors and acceptors. Furthermore, the available techniques (i.e., EPR, UV-vis, transient absorption spectroscopy) for studying the corresponding radical pairs will be discussed. Initially, two model systems (PMes3/CPh3+ and PMes3/B(C6F5)3) will be reviewed to highlight the difference between a thermal and a photoinduced SET mechanism. Additionally, three cases are analysed to provide further tools and insights into characterizing electron donors and acceptors, and the associated radical pairs. Firstly, a thermal SET process between LiHMDS and [TEMPO][BF4] is discussed. Next, the influence of Lewis acid complexation on the electron acceptor will be highlighted to facilitate a SET between (pBrPh)3N and TCNQ. Finally, an analysis of sulfonium salts as electron acceptors will demonstrate how to manage systems with rapidly decomposing radical species. This framework equips the reader with an expanded array of tools for both predicting and characterizing SET events within FLP chemistry, thereby enabling its extension and application to the broader domain of main-group (photo)redox chemistry.
Collapse
Affiliation(s)
- Lars J C van der Zee
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, PO box 94157, 1090 GD Amsterdam, The Netherlands.
| | - Jelle Hofman
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, PO box 94157, 1090 GD Amsterdam, The Netherlands.
| | - Joost M van Gaalen
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, PO box 94157, 1090 GD Amsterdam, The Netherlands.
| | - J Chris Slootweg
- Van 't Hoff Institute for Molecular Sciences, University of Amsterdam, PO box 94157, 1090 GD Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Timmann S, Wu TH, Golz C, Alcarazo M. Reactivity of α-diazo sulfonium salts: rhodium-catalysed ring expansion of indenes to naphthalenes. Chem Sci 2024; 15:5938-5943. [PMID: 38665534 PMCID: PMC11040645 DOI: 10.1039/d4sc01138d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 03/11/2024] [Indexed: 04/28/2024] Open
Abstract
In the presence of catalytic amounts of the paddlewheel dirhodium complex Rh2(esp)2, α-diazo dibenzothiophenium salts generate highly electrophilic Rh-coordinated carbenes, which evolve differently depending on their substitution pattern. Keto-moieties directly attached to the azomethinic carbon promote carbene insertion into one of the adjacent C-S bonds, giving rise to highly electrophilic dibenzothiopyrilium salts. This intramolecular pathway is not operative when the carbene carbon bears ester or trifluoromethyl substituents; in fact, these species react with olefins delivering easy to handle cyclopropyl-substituted sulfonium salts. When indenes are the olefins of choice, the initially formed cyclopropyl rings smoothly open with concomitant departure of dibenzothiophene, enabling access to a series of 2-functionalized naphthalenes.
Collapse
Affiliation(s)
- Sven Timmann
- Institut für Organische und Biomolekulare Chemie, Georg August Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| | - Tun-Hui Wu
- Institut für Organische und Biomolekulare Chemie, Georg August Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| | - Christopher Golz
- Institut für Organische und Biomolekulare Chemie, Georg August Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| | - Manuel Alcarazo
- Institut für Organische und Biomolekulare Chemie, Georg August Universität Göttingen Tammannstr 2 37077 Göttingen Germany
| |
Collapse
|
8
|
Fernandes AJ, Giri R, Houk KN, Katayev D. Review and Theoretical Analysis of Fluorinated Radicals in Direct C Ar-H Functionalization of (Hetero)arenes. Angew Chem Int Ed Engl 2024; 63:e202318377. [PMID: 38282182 DOI: 10.1002/anie.202318377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/30/2024]
Abstract
We highlight key contributions in the field of direct radical CAr- H (hetero)aromatic functionalization involving fluorinated radicals. A compilation of Functional Group Transfer Reagents and their diverse activation mechanisms leading to the release of radicals are discussed. The substrate scope for each radical is analyzed and classified into three categories according to the electronic properties of the substrates. Density functional theory computational analysis provides insights into the chemical reactivity of several fluorinated radicals through their electrophilicity and nucleophilicity parameters. Theoretical analysis of their reduction potentials also highlights the remarkable correlation between electrophilicity and oxidizing ability. It is also established that highly fluorinated radicals (e.g. ⋅OCF3) are capable of engaging in single-electron transfer (SET) processes rather than radical addition, which is in good agreement with experimental literature data. A reactivity scale, based on activation barrier of addition of these radicals to benzene is also elaborated using the high accuracy DLPNO-(U)CCSD(T) method.
Collapse
Affiliation(s)
- Anthony J Fernandes
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Rahul Giri
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, 90095, Los Angeles, California, United States
| | - Dmitry Katayev
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
9
|
He MY, Tang X, Wu HY, Nie J, Ma JA, Zhang FG. Electron Donor-Acceptor Complex Enabled Radical Cyclization of α-Diazodifluoroethyl Sulfonium Salt with Unactivated Alkynes. Org Lett 2023; 25:9041-9046. [PMID: 38088909 DOI: 10.1021/acs.orglett.3c03790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
An α-diazodifluoroethane sulfonium reagent was developed in this study to undergo [3 + 2] radical cyclization with unactivated alkynes to give the corresponding 3-difluoromethyl pyrazoles under blue light irradiation conditions. The key to the success of this transformation lies in the formation of an electron donor-acceptor (EDA) complex between an electron-deficient α-diazo sulfonium salt and an electron-rich triaryl amine. This study circumvents a major substrate scope limitation in polar cycloaddition reactions of existent diazodifluoroethane reagents.
Collapse
Affiliation(s)
- Ming-Yue He
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. of China
| | - Xiaodong Tang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. of China
| | - Hao-Yan Wu
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. of China
| | - Jing Nie
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. of China
| | - Jun-An Ma
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. of China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, P. R. of China
| | - Fa-Guang Zhang
- Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300072, P. R. of China
| |
Collapse
|