1
|
Yang S, Zhou J, Gan Z, Wu S, Shi D, Yan H, Xie L, Cheng J, Li Y. Synthesis, structure, and reactivity of fully aryl-substituted pyrroles: toward the synthesis of nitrogen-doped buckybowls. Org Biomol Chem 2024. [PMID: 39665416 DOI: 10.1039/d4ob01835d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
This study describes the synthesis and potential applications of pentaaryl-substituted pyrroles. We report a Pd-catalyzed approach for their preparation from 4,5-diyne-9-fluorenone (1,7-diyne) and aromatic amines. The target nitrogen-doped corannulenes (CO-hub-Ncor) were investigated computationally to understand their electronic properties. While the conversion of pyrroles to CO-hub-Ncor is underway, the pyrroles themselves hold promise as valuable building blocks for N-doped buckybowls. Additionally, the synthesized pyrrole derivatives exhibit interesting reactivity, including pyrrole oxidation, leading to a ring-opening product, specifically a dicarbonyl compound.
Collapse
Affiliation(s)
- Sha Yang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China.
| | - Jie Zhou
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China.
| | - Ziyang Gan
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Shuai Wu
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Dan Shi
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Hong Yan
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Lili Xie
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Jiajia Cheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China.
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yuanming Li
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, China.
- Key Laboratory of Molecule Synthesis and Function Discovery (Fujian Province University), College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
2
|
Deng Z, Luo Y, Huang G, He J, Phillips DL. Ultrafast Spectroscopic Investigation of the Aggregation Induced TADF from High-Level Reversed Intersystem Crossing. J Phys Chem Lett 2024; 15:11657-11663. [PMID: 39540870 DOI: 10.1021/acs.jpclett.4c02395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The thermally activated delayed fluorescence (TADF) originating from high-level intersystem crossing (hRISC) presents great potential in realizing a more full utilization of triplet excitons. In this study, DPA-FBP and TPA-FBP were doped in a PMMA film with different weight fractions to study the effect of aggregation on the luminescence properties. As a result, the TADF feature from hRISC was only found in the 50 wt % doped film, whereas the 1 wt % doped film only shows prompt fluorescence. The fs-TA spectroscopy results reveal that the 50 wt % film will generate charge transfer species to lower the energy gap, so that the high-lying triplet exciton can transition back to the singlet state, whereas that of the 1 wt % film will quickly transition to the lowest triplet state due to the unfavorable energy splitting. This study provides a new insight into aggregation effects on the excited-state properties of hot exciton materials and the solid-state photodynamic.
Collapse
Affiliation(s)
- Ziqi Deng
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Yunfeng Luo
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Guanheng Huang
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - Jiaxing He
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| | - David Lee Phillips
- Department of Chemistry, The University of Hong Kong, Pokfulam, Hong Kong 999077, China
| |
Collapse
|
3
|
Luo H, Liu J. Non-Alternant Nanographenes Bearing N-Doped Non-Hexagonal Pairs: Synthesis, Structural Analysis and Photophysical Properties. Angew Chem Int Ed Engl 2024; 63:e202410759. [PMID: 39032012 DOI: 10.1002/anie.202410759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/19/2024] [Accepted: 07/19/2024] [Indexed: 07/22/2024]
Abstract
Introduction of non-hexagons and/or heteroatoms allows for finely tuning the physicochemical properties of nanographenes. Heteroatoms doping have dominated the modulation of nanographenes with tunable band gap, rich electrochemical activities and so on. The pair of non-hexagons, for instance, pentagon-heptagon pairs, have furnished nanographenes with aromatic and/or antiaromatic characteristics, open-shell properties and so on. In order to meet the growing demand for versatile nanographenes in materials science, research on novel nanographenes with heteroatom doped non-hexagonal pairs has been aroused in recent years. In this review, we focus on nanographenes with nitrogen-doped non-hexagonal paris including the synthesis, structure analysis, photophysical properties, and potential applications in organic devices.
Collapse
Affiliation(s)
- Huan Luo
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, P.R. China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou, 515031, P.R. China
| | - Junzhi Liu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, P.R. China
- Materials Innovation Institute for Life Sciences and Energy (MILES), HKU-SIRI, Shenzhen, 518005, P.R. China
| |
Collapse
|
4
|
Elbert SM, Paine OTA, Kirschbaum T, Schuldt MP, Weber L, Rominger F, Mastalerz M. A Negatively Curved Nanographene with Four Embedded Heptagons. J Am Chem Soc 2024; 146:27324-27334. [PMID: 39329251 DOI: 10.1021/jacs.4c09185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Negatively curved nanographenes are considered as cutouts of three-dimensional fully sp2-hybridized carbon allotropes such as Schwarzites. Here we present the synthesis of a C76 cut-out of the Schwarzite 8-4-1-p proposed by Lenosky et al. and investigate its optical as well as electrochemical properties. Furthermore, supramolecular interactions with fullerenes C60 and C70 were studied.
Collapse
Affiliation(s)
- Sven M Elbert
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 272, 69120 Heidelberg, Germany
| | - Owen T A Paine
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 272, 69120 Heidelberg, Germany
| | - Tobias Kirschbaum
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 272, 69120 Heidelberg, Germany
| | - Moritz P Schuldt
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 272, 69120 Heidelberg, Germany
| | - Laura Weber
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 272, 69120 Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 272, 69120 Heidelberg, Germany
| | - Michael Mastalerz
- Organisch-Chemisches Institut Ruprecht-Karls-Universität Heidelberg Im Neuenheimer Feld 272, 69120 Heidelberg, Germany
| |
Collapse
|
5
|
Rana SS, Choudhury J. Orchestrated Octuple C-H Activation: A Bottom-Up Topology Engineering Approach toward Stimuli-Responsive Double-Heptagon-Embedded Wavy Polycyclic Heteroaromatics. Angew Chem Int Ed Engl 2024; 63:e202406514. [PMID: 38758986 DOI: 10.1002/anie.202406514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/09/2024] [Accepted: 05/15/2024] [Indexed: 05/19/2024]
Abstract
Curiosity-driven innovations on the design and synthesis of nonplanar polycyclic aromatic/heteroaromatic compounds with new molecular topologies unfold exciting opportunities for harnessing their intriguing supramolecular properties and thereby the development of novel functional organic materials. This work presents such an innovative synthetic concept of a bottom-up molecular topology engineering through a unique orchestrated octuple C-H activation reaction, toward the rapid synthesis of a novel class of double heptagon-incorporated nitrogen-doped laterally-fused polycyclic compounds with rarely reported wavy structural configuration. The profound impact of the molecular wavy structures of these compounds on their properties is manifested by weak and tunable solid-state intermolecular interactions controlling the electronic properties of the materials, leading to reversibly switchable fluorochromism in the solid state and thin films with mechanical force and solvent vapors as external stimuli, thereby indicating their potential applicability in rewritable fluorescent optical recording media, security papers, mechanosensors, volatile organic compound (VOC) sensors etc.
Collapse
Affiliation(s)
- Samim Sohel Rana
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462 066, India
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462 066, India
| |
Collapse
|
6
|
Qiu S, Valdivia AC, Zhuang W, Hung FF, Che CM, Casado J, Liu J. Nonalternant Nanographenes Containing N-Centered Cyclopenta[ ef]heptalene and Aza[7]Helicene Units. J Am Chem Soc 2024; 146:16161-16172. [PMID: 38720418 DOI: 10.1021/jacs.4c03815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Introducing helical subunits into negatively curved π-systems has a significant effect on both the molecular geometry and photophysical properties; however, the synthesis of these helical π-systems embedded with nonbenzenoid subunits remains challenging due to the high strain deriving from both the curvature and helix. Here, we report a family of nonalternant nanographenes containing a nitrogen (N)-doped cyclopenta[ef]heptalene unit. Among them, CPH-2 and CPH-3 can be viewed as hybrids of benzoannulated cyclopenta[ef]heptalene and aza[7]helicene. The crystal structures revealed a saddle geometry for CPH-1, a saddle-helix hybrid for CPH-2, and a twist-helix hybrid for CPH-3. Experimental measurements and theoretical calculations indicate that the saddle moieties in CPHs undergo flexible conformational changes at room temperature, while the aza[7]helicene subunit exhibits a dramatically increased racemization energy barrier (78.2 kcal mol-1 for CPH-2, 143.2 kcal mol-1 for CPH-3). The combination of the nitrogen lone electron pairs of the N-doped cyclopenta[ef]heptalene unit with the twisted helix fragments results in rich photophysics with distinctive fluorescence and phosphorescence in CPH-1 and CPH-2 and the similar energy fluorescence and phosphorescence in CPH-3. Both enantiopure CPH-2 and CPH-3 display distinct circular dichroism (CD) signals in the UV-vis range. Notably, compared to the reported fully π-extended helical nanographenes, CPH-3 exhibits excellent chiroptical properties with a |gabs| value of 1.0 × 10-2 and a |glum| value of 7.0 × 10-3; these values are among the highest for helical nanographenes.
Collapse
Affiliation(s)
- Shuhai Qiu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road Hong Kong 999077, China
| | - Abel Cárdenas Valdivia
- Department of Physical Chemistry, Faculty of Science, University of Málaga, Málaga 29071, Spain
| | - Weiwen Zhuang
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road Hong Kong 999077, China
| | - Faan-Fung Hung
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road Hong Kong 999077, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road Hong Kong 999077, China
- Chemistry and Chemical Engineering Guangdong Laboratory, Shantou 515031, China
| | - Juan Casado
- Department of Physical Chemistry, Faculty of Science, University of Málaga, Málaga 29071, Spain
| | - Junzhi Liu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road Hong Kong 999077, China
| |
Collapse
|
7
|
Ju YY, Luo H, Li ZJ, Zheng BH, Xing JF, Chen XW, Huang LX, Nie GH, Zhang B, Liu J, Tan YZ. Helical Nanographenes Bearing Pentagon-Heptagon Pairs by Stepwise Dehydrocyclization. Angew Chem Int Ed Engl 2024; 63:e202402621. [PMID: 38443314 DOI: 10.1002/anie.202402621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/07/2024]
Abstract
The incorporation of pentagon-heptagon pairs into helical nanographenes lacks a facile synthetic route, and the impact of these pairs on chiroptical properties remains unclear. In this study, a method for the stepwise construction of pentagon-heptagon pairs in helical nanographenes by the dehydrogenation of [6]helicene units was developed. Three helical nanographenes containing pentagon-heptagon pairs were synthesized and characterized using this approach. A wide variation in the molecular geometries and photophysical properties of these helical nanographenes was observed, with changes in the helical length of these structures and the introduction of the pentagon-heptagon pairs. The embedded pentagon-heptagon pairs reduced the oxidation potential of the synthesized helical nanographenes. The high isomerization energy barriers enabled the chiral resolution of the helicene enantiomers. Chiroptical investigations revealed remarkably enhanced circularly polarized luminescence and luminescence dissymmetry factors with an increasing number of the pentagon-heptagon pairs.
Collapse
Affiliation(s)
- Yang-Yang Ju
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Huan Luo
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Ze-Jia Li
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Bing-Hui Zheng
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jiang-Feng Xing
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xuan-Wen Chen
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ling-Xi Huang
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Guo-Hui Nie
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Bin Zhang
- Shenzhen Key Laboratory of Nanozymes and Translational Cancer Research, Department of Otolaryngology, Shenzhen Institute of Translational Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, China
| | - Junzhi Liu
- State Key Laboratory of Synthetic Chemistry, HKU-CAS Joint Laboratory on New Materials and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, 999077, China
| | - Yuan-Zhi Tan
- State Key Laboratory for Physical Chemistry of Solid Surfaces, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
8
|
Gan F, Zhang G, Liang J, Shen C, Qiu H. π-Extended Diaza[7]helicenes with Dual Negatively Curved Heptagons: Extensive Synthesis and Spontaneous Resolution into Strippable Homochiral Lamellae with Helical Symmetry. Angew Chem Int Ed Engl 2024; 63:e202320076. [PMID: 38230611 DOI: 10.1002/anie.202320076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 01/18/2024]
Abstract
We report a unique category of π-extended diaza[7]helicenes with double negative curvatures. This is achieved by two-fold regioselective heptagonal cyclization of the oligoarylene-carbazole precursors through either intramolecular C-H arylation or Scholl reaction. The fusion of two heptagonal rings in the helical skeleton dramatically increases the intramolecular strain and forces the two terminal carbazole moieties to stack in a compressed fashion. The presence of the deformable negatively curved heptagonal rings endows the resulting diaza[7]helicenes with dynamic chiral skeletons, aggregation-induced emission feature and relatively low racemization barrier of ca. 25.6 kcal mol-1 . Further π-extension on the carbazole moieties subsequently leads to a more sophisticated C2 -symmetric homochiral triple helicene. Notably, these π-extended diaza[7]helicenes show structure-dependent stacking upon crystallization, switching from heterochiral packing to intra-layer homochiral stacking. Interestingly, the C2 -symmetric triple helicene molecules spontaneously resolve into a homochiral lamellar structure with 31 helix symmetry. Upon ultrasonication in a nonsolvent, the crystals can be readily exfoliated into large-area ultrathin nanosheets with height of ca. 4.4 nm corresponding to two layers of stacked triple helicene molecules and relatively thicker nanosheets constituted by even-numbered molecular lamellae. Moreover, regular hexagonal thin platelets with size larger than 30 μm can be readily fabricated by flash aggregation.
Collapse
Affiliation(s)
- Fuwei Gan
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guoli Zhang
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juncong Liang
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chengshuo Shen
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Huibin Qiu
- School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
9
|
Ruan L, Luo W, Zhang H, Liu P, Shi Y, An P. Cycl[2,2,4]azine-embedded non-alternant nanographenes containing fused antiaromatic azepine ring. Chem Sci 2024; 15:1511-1519. [PMID: 38274082 PMCID: PMC10806646 DOI: 10.1039/d3sc05515a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
The development of non-alternant nanographenes has attracted considerable attention due to their unique photophysical properties. Herein, we reported a novel aza-doped, non-alternant nanographene (NG) 1 by embedding the cycl[2,2,4]azine unit into the benzenoid NG framework. Single-crystal X-ray diffractometry suggests saddle or twisted nonplanar geometry of the entire backbone of 1 and coplanar conformation of the cycl[2,2,4]azine unit. DFT calculation together with solid structure indicates that NG 1 possesses significant local antiaromaticity in the azepine ring. By oxidative process or trifluoroacetic acid treatment, this nanographene can transform into a mono-radical cation, which was confirmed by UV/Vis absorption, 1H NMR, and electron paramagnetic resonance (EPR) spectroscopy. The antiaromaticity/aromaticity switching of the azepine ring on 1˙+ from 1 enables the high stability of this radical cation, which remained intact for over 1 day. Due to the electron-donating nature of the nitrogen and the unique electronic structure, NG 1 exhibits strong electron-donating properties, as proved by the intermolecular charge transfer towards C60 with a high association constant. Furthermore, selective modification of NG 1 was accomplished by Vilsmeier reaction, and the derivatives 7 and 8 with substituted benzophenone were obtained. The photophysical and electronic properties can be tuned by the introduction of different electronic groups in benzophenone.
Collapse
Affiliation(s)
- Lan Ruan
- School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Wanhua Luo
- School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Haifan Zhang
- School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Peng Liu
- School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Yong Shi
- School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
| | - Peng An
- School of Chemical Science and Technology, Yunnan University Kunming 650091 P. R. China
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan University Kunming 650091 P. R. China
| |
Collapse
|