1
|
Xu Y, Zhang J, Wang Z, Zhang P, Zhang Z, Yang Z, Lam JWY, Kwok RTK, Meng L, Dang D, Tang BZ. Water-soluble AIE photosensitizer in short-wave infrared region for albumin-enhanced and self-reporting phototheranostics. Biomaterials 2025; 314:122847. [PMID: 39357148 DOI: 10.1016/j.biomaterials.2024.122847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/17/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Organic photosensitizers (PSs) play important roles in phototheranostics, and contribute to the fast development of precision medicine. However, water-soluble and highly emissive organic PSs, especially those emitting in the short-wave infrared region (SWIR), are still challenging. Also, it's difficult to prepare self-reporting PSs for visualizing the treatment via stimulated emission depletion (STED) nanoscopy. Thus, in this work, a water-soluble molecule of DTPAP-TBZ-I with aggregation-induced emission features is designed for the self-reporting photodynamic therapy (PDT) in an ultra-high resolution. In contrast to single molecule, its complex (DTPAP-TBZ-I@BSA) shows much enhanced fluorescence properties and reactive oxygen species (ROS) generation in SWIR window. Their photoluminescence quantum yield is determined to be ∼20.6 % and the enhancement of ROS generation is ∼18-fold. During the PDT, immigration of the complex from cytoplasm to nucleus is also observed via STED nanoscopy with a resolution of 66.11 nm, which allows self-report in the PDT treatment. DTPAP-TBZ-I@BSA is finally utilized for the imaging-guided PDT in vivo with a tumor inhibition rate of 84 %. This is the first work in albumin-enhanced water-soluble organic PSs in SWIR window for self-reporting phototheranostics at ultra-high resolutions, providing an ideal solution for the next generation of photosensitizers for precise medicine.
Collapse
Affiliation(s)
- Yanzi Xu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiao Tong University, Xi'an, 710049, PR China; Department of Chemistry, and Department of Chemical and Biological Engineering, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, 999077, PR China
| | - Jianyu Zhang
- Department of Chemistry, and Department of Chemical and Biological Engineering, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, 999077, PR China
| | - Zhi Wang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiao Tong University, Xi'an, 710049, PR China
| | - Peijuan Zhang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiao Tong University, Xi'an, 710049, PR China
| | - Zichen Zhang
- School of Physics, Xi'an Jiao Tong University, Xi'an, 710049, PR China
| | - Zhiwei Yang
- School of Physics, Xi'an Jiao Tong University, Xi'an, 710049, PR China
| | - Jacky W Y Lam
- Department of Chemistry, and Department of Chemical and Biological Engineering, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, 999077, PR China
| | - Ryan T K Kwok
- Department of Chemistry, and Department of Chemical and Biological Engineering, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, 999077, PR China
| | - Lingjie Meng
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiao Tong University, Xi'an, 710049, PR China; Instrumental Analysis Center, Xi'an Jiao Tong University, Xi'an, 710049, PR China.
| | - Dongfeng Dang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiao Tong University, Xi'an, 710049, PR China.
| | - Ben Zhong Tang
- Department of Chemistry, and Department of Chemical and Biological Engineering, The Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, The Hong Kong University of Science and Technology, Hong Kong, 999077, PR China; School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, PR China.
| |
Collapse
|
2
|
Qi Y, Liu W, Du T, Wang J, Jiao S. Red/near-infrared (NIR) difluoroboron β-diketonate derivatives with reversible mechanochromism for cellular imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:124986. [PMID: 39217960 DOI: 10.1016/j.saa.2024.124986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024]
Abstract
Near-infrared (NIR) fluorophores have promoted the development of materials for bioimaging, but traditional NIR dyes usually suffer from aggregation-caused quenching (ACQ), impeding their applications. Herein, we propose two difluoroboron β-diketonate complexes TBO and TBS, consisting a donor-acceptor (D-A) structure with triphenylamine (TPA) moiety as an electron donors and difluoroboron as well as furan or thiophene building block as an electron acceptor. The theoretical calculation and optical data shows that both of them have intramolecular charge transfer (ICT) characteristics. Such ICT characteristics endow them with both solvatochromism and dual-state emission (DSE) properties. In the solvent CH2Cl2, the emission wavelength of TBO ranges from 550 nm to 750 nm, with a low fluorescence quantum yield (Φ = 7.0 %). However, in the less polar solvent hexane, the emission wavelength blue-shifts, with an increased Φ reaching up to 18 %. Moreover, TBO and TBS exhibit mechanochromic characteristics and rare multi-channel fluorescence emission phenomena at solid-state. Their solid-state samples can emit fluorescence in four spectral bands with maximum emission wavelengths at 300 nm, 400 nm, 600 nm, and 770 nm under excitation at 240 nm. These unique optical properties are expected to be utilized for detecting polarity of system and deformation. Moreover, according to the results of cell imaging and flow cytometry, TBO molecular were easily internalized into Hela cells and distributed in the cytoplasm with strong red fluorescence. Therefore, this research inspires more insight into development of NIR luminogens for biomedical imaging.
Collapse
Affiliation(s)
- Yunpeng Qi
- School of Chemistry and Chemical Engineering, University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, PR China.
| | - Wei Liu
- School of Chemistry and Chemical Engineering, University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, PR China
| | - Tao Du
- School of Chemistry and Chemical Engineering, University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, PR China
| | - Junlong Wang
- School of Chemistry and Chemical Engineering, University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, PR China
| | - Songlin Jiao
- School of Chemistry and Chemical Engineering, University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, Xinjiang Key Laboratory of Clean Conversion and High Value Utilization of Biomass Resources, Yili Normal University, Yining 835000, PR China
| |
Collapse
|
3
|
Huang W, Han G, Wang D, Zhu Y, Wang H, Liu Z, Uvdal K, Geng J, Hu Z, Zhang R, Zhang Z. Lipophilicity Modulation of Fluorescent Probes for In Situ Imaging of Cellular Microvesicle Dynamics. J Am Chem Soc 2025. [PMID: 39749720 DOI: 10.1021/jacs.4c13516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Real-time monitoring of dynamic microvesicles (MVs), vesicles associated with living cells, is of great significance in deeply understanding their origin, transport, and function. However, specific labeling MVs poses a challenge due to the lack of unique biomarkers that differentiate them from other cellular compartments. Here, we present a strategy to selectively label MVs by evaluating a series of lipid layer-sensitive cationic indolium-coumarin fluorescent probes (designated as IC-Cn, with n ranging from 1 to 18) that feature varying aliphatic side chains (CnH2n+1). Through in situ cell imaging and analysis, we found that IC-Cn location is highly related to their lipophilicities and the phospholipid layer hydrophobic microenvironments in cellular compartments. In detail, IC-C1 and IC-C2 specifically localize MVs both inside and outside cells. In contrast, IC-C3, IC-C4, and IC-C5 label cellular MVs and mitochondria but with distinct fluorescence lifetimes. Using these probes strategically, we have discovered that, in addition to the biogenesis of MVs from plasma membranes and damaged mitochondria, newly formed MVs can undergo fusion and fission processes. Moreover, mitochondria-derived MVs, beyond being released from parent cells, can fuse with lysosomes to facilitate the removal of dysfunctional mitochondria. The work not only provides new insights into MV physiology but also inspires the design strategies for probes used in specific labeling in cell studies.
Collapse
Affiliation(s)
- Wei Huang
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Guangmei Han
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Dong Wang
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Yingzhong Zhu
- School of Materials and Chemical Engineering, Chuzhou University, Chu Zhou, Anhui 239000, China
| | - Hui Wang
- School of Pharmacy, Wannan Medical College, Wuhu, Anhui 241002, China
| | - Zhengjie Liu
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Kajsa Uvdal
- Department of Physics, Chemistry and Biology, Linköping University, Linköping 58183, Sweden
| | - Junlong Geng
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Zhangjun Hu
- Department of Physics, Chemistry and Biology, Linköping University, Linköping 58183, Sweden
| | - Ruilong Zhang
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| | - Zhongping Zhang
- School of Chemistry and Chemical Engineering, Institute of Physical Science and Information Technology, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
4
|
Zhang Q, Wang X, Chen J, Wu J, Zhou M, Xia R, Wang W, Zheng X, Xie Z. Recent progress of porphyrin metal-organic frameworks for combined photodynamic therapy and hypoxia-activated chemotherapy. Chem Commun (Camb) 2024; 60:13641-13652. [PMID: 39497649 DOI: 10.1039/d4cc04512b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
Nanoscale metal-organic frameworks integrated with porphyrins (Por-nMOFs) have emerged as efficient nanoplatforms for photodynamic therapy (PDT), which relies on the conversion of molecular oxygen into cytotoxic singlet oxygen. However, the hypoxic microenvironment within tumors significantly limits the efficacy of PDT. To address this challenge, researchers have explored various strategies to either alter or exploit the hypoxic conditions in tumors. One such strategy involves leveraging the porous structure of Por-nMOFs to load hypoxia-activated prodrugs (HAPs) like tirapazamine (TPZ), thereby utilizing the tumor's intrinsic hypoxic environment to trigger a chemotherapeutic effect that synergizes with PDT. Advances in nanoscience have enabled the development of porphyrin-based nMOFs capable of simultaneously loading both porphyrin photosensitizers and TPZ, ensuring effective release within cancer cells under high-phosphate conditions. The subsequent activation of co-loaded TPZ, by the tumor's own hypoxic microenvironment, and that created during PDT, facilitates a combined PDT and chemotherapy approach. This method not only enhances the suppression of cancer cell proliferation but also improves control over tumor metastasis while mitigating the negative impact of hypoxia on singular Por-nMOFs in PDT. This review summarizes recent advances in Por-nMOFs research, focusing on the design strategies for enhancing water dispersibility, circulatory stability, and targeting specificity through post-synthetic modifications. Additionally, this review highlights the bioapplication of Por-nMOFs by integrating TPZ chemotherapy and other therapeutic modalities to combat hypoxic and metastatic malignancies. We anticipate that this review will inspire further research into Por-nMOFs and advance their application in biomedicine.
Collapse
Affiliation(s)
- Qiuyun Zhang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Xiaohui Wang
- School of Public Health, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Jiayi Chen
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Junjie Wu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Mengjiao Zhou
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Rui Xia
- School of Public Health, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Xiaohua Zheng
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China.
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
5
|
Liu D, An H, Li X, Wang B, Zhao S, Lan M, Yang Z, Song X. Lysosome-Targeted Bifunctional Fluorescent Probe and Type I/II Photosensitizer for Viscosity Imaging and Cancer Photodynamic Therapy. LUMINESCENCE 2024; 39:e70028. [PMID: 39508310 DOI: 10.1002/bio.70028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/25/2024] [Accepted: 10/27/2024] [Indexed: 11/15/2024]
Abstract
Abnormal lysosomal viscosity is closely associated with cancer progression, underscoring the need for bifunctional fluorescent probes and photosensitizers (PSs) that can both monitor viscosity and facilitate imaging-guided therapy for simultaneous cancer diagnosis and treatment. Despite advances in lysosome-targeted PSs development, few have demonstrated the ability to generate both Type I and Type II reactive oxygen species (ROS). In this study, we present BTTPA, a lysosome-targeted fluorescent probe and photosensitizer, designed to integrate cancer diagnosis via viscosity imaging and cancer treatment through photodynamic therapy (PDT). Our findings reveal that BTTPA selectively targets lysosomes, enabling dynamic monitoring of cellular viscosity and distinguishing cancer cells from normal cells. Upon light activation, BTTPA efficiently generates both Type I and Type II ROS. Apoptosis assays further confirm BTTPA's effectiveness in inducing cancer cell apoptosis, highlighting its potential as a powerful tool for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Du Liu
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan, China
| | - Hongyan An
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan, China
| | - Xianglong Li
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan, China
| | - Benhua Wang
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan, China
| | - Shaojing Zhao
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan, China
| | - Minhuan Lan
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan, China
| | - Zhanhong Yang
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan, China
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering, Central South University, Changsha, Hunan, China
| |
Collapse
|
6
|
Wu Y, Yu H, Li C, Liu L, Zhang Y, Gong J, Sha R, Feng L, Yan H, Jiang G, Wang J, Tang BZ. Spacer Twisting Strategy to Realize Ultrabright Near-Infrared II Polymer Nanoparticles for Fluorescence Imaging-Guided Tumor Phototheranostics. ACS NANO 2024; 18:28178-28188. [PMID: 39360480 DOI: 10.1021/acsnano.4c07896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Conjugated polymers are becoming popular near-infrared II (NIR-II) phototheranostic agents (PTAs) due to their numerous advantages, such as high photostability, large molar extinction coefficients, and excellent photothermal properties. However, the strong π-π interactions between the chains of the conjugated polymers resulted in their generally low NIR-II emission quantum yields (QY). Therefore, the synthesis of conjugated polymers with high QY is an interesting but challenging task. Herein, we proposed a spacer twisting strategy to realize ultrabright NIR-II polymer nanoparticles for fluorescence imaging-guided tumor phototheranostics. Theoretical calculations indicated that the polymer PY-IT has the largest dihedral angle between the largely π-conjugated skeleton and the spacer, which can effectively inhibit intermolecular π-π stacking, resulting in an improved QY as high as 16.5% in nanoparticles. In addition, PY-IT NPs can effectively perform NIR-II imaging and photothermal treatment of tumors. The work presents some valuable guides for achieving ultrabright NIR-II polymeric PTAs with high QY.
Collapse
Affiliation(s)
- Yifan Wu
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, China
| | - Han Yu
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research, Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Chunbin Li
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, China
| | - Lingxiu Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, China
| | - Yue Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, China
| | - Jianye Gong
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, China
| | - Renmanduhu Sha
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, China
| | - Lina Feng
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, China
| | - He Yan
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research, Center for Tissue Restoration and Reconstruction, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 999077, Hong Kong, China
| | - Guoyu Jiang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Inner Mongolia University, Hohhot 010021, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen 518172, Guangdong, China
| |
Collapse
|
7
|
Tan S, Fu Q, Lei K, Mei W, Liu J, Qian X, Xu Y. Naphtho[1,8-ef]isoindole-7,8,10(9H)-trione as Novel Theranostic Agents for Photodynamic Therapy and Multi-Subcellular Organelles Localization. ChemMedChem 2024; 19:e202400187. [PMID: 38711387 DOI: 10.1002/cmdc.202400187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
A series of naphtho[1,8-ef]isoindole-7,8,10(9H)-trione derivatives as novel theranostic agents for photodynamic therapy and multi-subcellular organelles localization were designed and synthesized. Most of them possess moderate fluorescence quantum yield and long wavelength absorption simultaneously, which made them possible for dual effects of imaging and therapy. Notably, compounds 7 b and 7 d exhibited significant light-toxicity but slight dark-toxicity. Confocal fluorescence microscopy experiments demonstrated that compound 7 b can locate and image in special multi-subcellular organelles. All the research results implied that naphtho[1,8-ef] isoindole-7,8,10(9H)-trione derivatives can be applied as a new series of theranostic agents with the characteristics of photodynamic therapy and multi-subcellular organelles imaging.
Collapse
Affiliation(s)
- Shaoying Tan
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Qiqi Fu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Kecheng Lei
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, Biomedical Nanotechnology Center, School of pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenyi Mei
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Jianwen Liu
- State Key Laboratory of Bioreactor Engineering & Shanghai Key Laboratory of New Drug Design, Biomedical Nanotechnology Center, School of pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Xuhong Qian
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| | - Yufang Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
8
|
Gong J, Wang X, Zhang W, Wu Y, Li K, Sha R, Liu L, Li C, Feng L, Jiang G, Wang J, Tang BZ. Sulfur oxidation states manipulate excited state electronic configurations for constructing highly efficient organic type I photosensitizers. Chem Sci 2024; 15:13001-13010. [PMID: 39148804 PMCID: PMC11322962 DOI: 10.1039/d4sc03039g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/10/2024] [Indexed: 08/17/2024] Open
Abstract
The multiple relaxation processes of excited states are a bridge connecting molecular structures and properties, providing enormous application potential for organic luminogens. However, a systematic understanding and manipulation of the relationship between the molecular structure, excited state relaxation processes, and properties of organic luminogens is still lacking. Herein, we report a strategy for manipulating excited state electronic configurations through the regulation of the sulfur oxidation state to construct eminent organic type I PSs. Combined with the experimental results and theoretical calculations, we have successfully revealed the decisive role of high sulfur oxidation states in promoting ROS production capacity. Impressively, a higher sulfur oxidation state can reduce the singlet-triplet energy gap (ΔE ST), increase the matching degree of transition configurations, promote the changes of the excited state electronic configurations, and boost the effective ISC proportion by enhancing intramolecular interactions. Therefore, DBTS2O with the highest sulfur oxidation state exhibits the strongest type I ROS generation ability. Additionally, guided by our strategy, a water-soluble PS (2OA) is designed and synthesized, showing selective imaging capacity and photokilling ability against Gram-positive bacteria. This study broadens the horizons for both molecular design and mechanism study of high-performance organic type I PSs.
Collapse
Affiliation(s)
- Jianye Gong
- Inner Mongolia Key Laboratory of Fine Organic Synthesis Department, College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P. R. China
| | - Xiaopeng Wang
- Xi'an Modern Chemistry Research Institute Xi'an 710069 P. R. China
| | - Weijing Zhang
- Inner Mongolia Key Laboratory of Fine Organic Synthesis Department, College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P. R. China
| | - Yifan Wu
- Inner Mongolia Key Laboratory of Fine Organic Synthesis Department, College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P. R. China
| | - Kai Li
- Inner Mongolia Key Laboratory of Fine Organic Synthesis Department, College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P. R. China
| | - Renmanduhu Sha
- Inner Mongolia Key Laboratory of Fine Organic Synthesis Department, College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P. R. China
| | - Lingxiu Liu
- Inner Mongolia Key Laboratory of Fine Organic Synthesis Department, College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P. R. China
| | - Chunbin Li
- Inner Mongolia Key Laboratory of Fine Organic Synthesis Department, College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P. R. China
| | - Lina Feng
- Inner Mongolia Key Laboratory of Fine Organic Synthesis Department, College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P. R. China
| | - Guoyu Jiang
- Inner Mongolia Key Laboratory of Fine Organic Synthesis Department, College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P. R. China
| | - Jianguo Wang
- Inner Mongolia Key Laboratory of Fine Organic Synthesis Department, College of Chemistry and Chemical Engineering, Inner Mongolia University Hohhot 010021 P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen Shenzhen Guangdong 518172 P. R. China
| |
Collapse
|
9
|
Zhu G, Liu Z, Qi Q, Xing J, Li Q. Responsive Organic Fluorescent Aggregates Based on Ion-π Interactions Away from Fluorescent Conjugated Groups. Angew Chem Int Ed Engl 2024; 63:e202406417. [PMID: 38712562 DOI: 10.1002/anie.202406417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/02/2024] [Accepted: 05/06/2024] [Indexed: 05/08/2024]
Abstract
Responsive organic luminescent aggregates have a wide range of application fields, but currently there is still a lack of reasonable molecular design strategies. Introducing ion-π interactions into molecules can effectively alter their luminescent properties. However, current research typically focuses on ion localization at luminescent conjugated groups with the strong interaction forces. In this work, we introduce the flexible alkoxy chain spacers between fluorescent conjugated groups and ion-π interaction sites, and then adjust the fluorescence performance of the molecule by changing the strength of ion-π interactions. Bromine ion-based molecules with strong ion-π interactions exhibit high and stable fluorescence quantum yields in crystals and amorphous powders under the external stimuli. Hexafluorophosphate ion-based molecules with weak ion-π interactions have the high fluorescence quantum yield in crystals and very low fluorescence quantum yield in amorphous powders, showing variable fluorescence intensities under external stimuli. This demonstrates a new class of responsive organic luminescent solid-state materials.
Collapse
Affiliation(s)
- Guanqun Zhu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Zhiyang Liu
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Qi Qi
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Junfei Xing
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
- Materials Science Graduate Program, Kent State University, Kent, OH 44242, USA
| |
Collapse
|
10
|
Peng S, Song J, Wu S, Wang Q, Shen L, Li D, Peng J, Zhang Q, Yang X, Xu H, Redshaw C, Li Y. Aggregation-Induced Emission Photosensitizer with Ag(I)-π Interaction-Enhanced Reactive Oxygen Species for Eliminating Multidrug Resistant Bacteria. ACS APPLIED MATERIALS & INTERFACES 2024; 16:30915-30928. [PMID: 38847621 DOI: 10.1021/acsami.4c05202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Multidrug-resistant (MDR) bacteria pose serious threats to public health due to the lack of effective and biocompatible drugs to kill MDR bacteria. Photodynamic antibacterial therapy has been widely studied due to its low induction of resistance. However, photosensitizers that can efficiently generate reactive oxygen species (ROS) through both type I and type II mechanisms and that have the capability of multiple modes of action are rarely reported. Addressing this issue, we developed a near-infrared-emitting triphenylamine indole iodoethane (TTII) and its silver(I) self-assembled (TTIIS) aggregation-induced emission (AIE) photosensitizer for multimode bacterial infection therapy. TTII can efficiently produce both Type I ROS •OH and Type II ROS 1O2. Interestingly, the Ag(I)-π interaction contributed in TTIIS efficiency promotion of the generation of 1O2. Moreover, by releasing Ag+, TTIIS enabled photodynamic-Ag(I) dual-mode sterilization. As a result, TTIIS achieved an effective enhancement of antibacterial activity, with a 1-2-fold boost against multidrug-resistant Escherichia coli (MDR E. coli). Both TTII and TTIIS at a concentration as low as 0.55 μg mL-1 can kill more than 98% of methicillin resistant Staphylococcus aureus (MRSA) on MRSA-infected full-thickness defect wounds of a mouse, and both TTII and TTIIS were effective in eliminating the bacteria and promoting wound healing.
Collapse
Affiliation(s)
- Senlin Peng
- School of Biology and Engineering (School of Health Medicine Modern Industry), Guizhou Medical University, Guiyang 550025, China
| | - Jiayi Song
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Shouting Wu
- School of Biology and Engineering (School of Health Medicine Modern Industry), Guizhou Medical University, Guiyang 550025, China
| | - Qian Wang
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Lingyi Shen
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Dongmei Li
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Jian Peng
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Qilong Zhang
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Xianjiong Yang
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Hong Xu
- School of Basic Medicine, Guizhou Medical University, Guiyang 550025, China
| | - Carl Redshaw
- Chemistry, School of Natural Sciences, University of Hull, Cottingham Road, Hull, Yorkshire HU6 7RX, United Kingdom
| | - Ying Li
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| |
Collapse
|
11
|
Meng Q, Tan Y, Sang EE, Teng Q, Chen P, Wang Y. C9-Aryl-substituted berberine derivatives with tunable AIE properties for cell imaging application. Org Biomol Chem 2024; 22:4739-4747. [PMID: 38804062 DOI: 10.1039/d4ob00685b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Berberine (BBR), a widely used isoquinoline alkaloid derived from natural sources, exhibits aggregation-induced emission (AIE) characteristics and has biological applications such as in selective lipid droplet imaging and photodynamic therapy. However, natural BBR suffers from low fluorescence quantum yield (ΦF) and monotonous emission wavelength. In this paper, a series of C9-position-aryl-substituted berberine derivatives with a D-A structure were designed and synthesized. The electronic effect of the substitution groups can tune the intramolecular charge transfer (ICT) effect of the berberine derivatives, resulting in bluish green to NIR (508-682 nm) luminescence with AIE characteristics and enhanced ΦF up to 36% in the solid state. Interestingly, berberine derivatives containing an amino or a pyridyl group can exhibit fluorescence response to TFA. Cell imaging of the berberine derivatives was conducted using Caco-2 cancer cells, demonstrating their multi-color and efficient wash-free imaging capabilities. This work presents a new strategy for developing novel berberine derivatives with tunable AIE properties for application in biological imaging.
Collapse
Affiliation(s)
- Qi Meng
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China.
| | - Ye Tan
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - E E Sang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China.
| | - Qiaoqiao Teng
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Pei Chen
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China.
| | - Yuxiang Wang
- School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
12
|
Zhang Z, Xiong Z, Zhang J, Chu B, Liu X, Tu W, Wang L, Sun JZ, Zhang C, Zhang H, Zhang X, Tang BZ. Near-Infrared Emission Beyond 900 nm from Stable Radicals in Nonconjugated Poly(diphenylmethane). Angew Chem Int Ed Engl 2024; 63:e202403827. [PMID: 38589299 DOI: 10.1002/anie.202403827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 04/10/2024]
Abstract
Organic radicals with narrow energy gaps are highly sought-after for the production of near-infrared (NIR) fluorophores. However, the current repertoire of developed organic radicals is notably limited, facing challenges related to stability and low fluorescence efficiency. This study addresses these limitations by achieving stable radicals in nonconjugated poly(diphenylmethane) (PDPM). Notably, PDPM exhibits a well-balanced structural flexibility and rigidity, resulting in a robust intra-/inter-chain through-space conjugation (TSC). The stable radicals within PDPM, coupled with strong TSC, yield a remarkable full-spectrum emission spanning from blue to NIR beyond 900 nm. This extensive tunability is achieved through careful adjustments of concentration and excitation wavelength. The findings highlight the efficacy of polymerization in stabilizing radicals and introduce a novel approach for developing nonconjugated NIR emitters based on triphenylmethane subunits.
Collapse
Affiliation(s)
- Ziteng Zhang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Zuping Xiong
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Jianyu Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
| | - Bo Chu
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou, 310058, China
| | - Xiong Liu
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Weihao Tu
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Lei Wang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
| | - Jing Zhi Sun
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou, 310058, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Chengjian Zhang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
| | - Haoke Zhang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University, Hangzhou, 310058, China
- Zhejiang-Israel Joint Laboratory of Self-Assembling Functional Materials, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 311215, China
- Centre of Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing, 312000, China
| | - Xinghong Zhang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, International Research Center for X Polymers, Zhejiang University, Hangzhou, 310058, China
| | - Ben Zhong Tang
- Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310058, China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction and Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong, 999077, China
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| |
Collapse
|
13
|
Ju M, Yang L, Wang G, Zong F, Shen Y, Wu S, Tang X, Yu D. A type I and type II chemical biology toolbox to overcome the hypoxic tumour microenvironment for photodynamic therapy. Biomater Sci 2024; 12:2831-2840. [PMID: 38683541 DOI: 10.1039/d4bm00319e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Photodynamic therapy (PDT) is a minimally invasive therapeutic modality employed for the treatment of various types of cancers, localized infections, and other diseases. Upon illumination, the photo-excited photosensitizer generates singlet oxygen and other reactive species, thereby inducing cytotoxicity in the target cells. The hypoxic tumour microenvironment (TME), however, poses a limitation on the supply of oxygen in tumour tissues. Moreover, under such conditions, tumour metastasis and drug resistance frequently occur, further compromising the efficacy of PDT in combating tumours. Traditionally, type I photosensitizers with lower oxygen consumption demonstrate significant potential in overcoming hypoxic environments and play a crucial role in determining the therapeutic efficacy of PDT because type I photosensitizers can generate highly cytotoxic free radicals. In comparison, type II photosensitizers exhibit high oxygen dependence. The rate of reactive oxygen species (ROS) generation in the type II process is significantly higher than that in the type I process. Thus, the efficiency and selectivity of PDT depend on the properties of the photosensitizer. Here, the recent development and application of type I and type II photosensitizers, mainly in the past year, are summarized. The design methods, electronic structures, photophysical properties, lipophilic properties, electric charge, and other molecular characteristics of these photosensitizers are discussed in detail. These modifications alter the microstructure of photosensitizers and directly impact the results of PDT. The main content of this paper will have a positive promoting and inspiring effect on the future development of PDT.
Collapse
Affiliation(s)
- Minzi Ju
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu, China
| | - Lu Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guowei Wang
- Department of Specialist Clinic, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Feng Zong
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| | - Yu Shen
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| | - Shuangshuang Wu
- Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| | - Xuna Tang
- Department of Specialist Clinic, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Research Institute of Stomatology, Nanjing University, Nanjing, China.
| | - Decai Yu
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
14
|
Liu L, Gong J, Jiang G, Wang J. Anion-π + AIEgens for Fluorescence Imaging and Photodynamic Therapy. Chemistry 2024; 30:e202400378. [PMID: 38418406 DOI: 10.1002/chem.202400378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/01/2024]
Abstract
Fluorescence imaging-guided photodynamic therapy (PDT) has attracted extensive attention due to its potential of real-time monitoring the lesion locations and visualizing the treatment process with high sensitivity and resolution. Aggregation-induced emission luminogens (AIEgens) show enhanced fluorescence and reactive oxygen species (ROS) generation after cellular uptake, giving them significant advantages in bioimaging and PDT applications. However, most AIEgens are unfavorable for the application in organisms due to their severe hydrophobicity. Anion-π+ type AIEgens carry intrinsic charges that can effectively alleviate their hydrophobicity and improve their binding capability to cells, which is expected to enhance the bioimaging quality and PDT performance. This concept summarizes the applications of anion-π+ type AIEgens in fluorescence imaging, fluorescence imaging-guided photodynamic anticancer and antimicrobial therapy in recent years, hoping to provide some new ideas for the construction of robust photosensitizers. Finally, the current problems and future challenges of anion-π+ AIEgens are discussed.
Collapse
Affiliation(s)
- Lingxiu Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Institutes of Biomedical Sciences, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jianye Gong
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Institutes of Biomedical Sciences, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Guoyu Jiang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Institutes of Biomedical Sciences, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jianguo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia Key Laboratory of Fine Organic Synthesis, Institutes of Biomedical Sciences, Inner Mongolia University, Hohhot, 010021, P. R. China
| |
Collapse
|
15
|
Haque A, Alenezi KM, Alsukaibi AKD, Al-Otaibi AA, Wong WY. Water-Soluble Small Organic Fluorophores for Oncological Theragnostic Applications: Progress and Development. Top Curr Chem (Cham) 2024; 382:14. [PMID: 38671325 DOI: 10.1007/s41061-024-00458-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/14/2024] [Indexed: 04/28/2024]
Abstract
Cancer is one of the major noncommunicable diseases, responsible for millions of deaths every year worldwide. Though various cancer detection and treatment modalities are available today, many deaths occur owing to its late-stage detection and metastatic nature. Noninvasive detection using luminescence-based imaging tools is considered one of the promising techniques owing to its low cost, high sensitivity, and brightness. Moreover, these tools are unique and valuable as they can detect even the slightest changes in the cellular microenvironment. To achieve this, a fluorescent probe with strong tumor uptake and high spatial and temporal resolution, especially with high water solubility, is highly demanded. Recently, several water-soluble molecules with emission windows in the visible (400-700 nm), first near-infrared (NIR-I, 700-1000 nm), and second near-infrared (NIR-II, 1000-1700 nm) windows have been reported in literature. This review highlights recently reported water-soluble small organic fluorophores/dyes with applications in cancer diagnosis and therapeutics. We systematically highlight and describe the key concepts, structural classes of fluorophores, strategies for imparting water solubility, and applications in cancer therapy and diagnosis, i.e., theragnostics. We discuss examples of water-soluble fluorescent probes based on coumarin, xanthene, boron-dipyrromethene (BODIPY), and cyanine cores. Some other emerging classes of dyes based on carbocyclic and heterocyclic cores are also discussed. Besides, emerging molecular engineering methods to obtain such fluorophores are discussed. Finally, the opportunities and challenges in this research area are also delineated.
Collapse
Affiliation(s)
- Ashanul Haque
- Department of Chemistry, College of Science, University of Ha'il, 81451, Ha'il, Saudi Arabia.
- Medical and Diagnostic Research Centre, University of Ha'il, 55473, Ha'il, Saudi Arabia.
| | - Khalaf M Alenezi
- Department of Chemistry, College of Science, University of Ha'il, 81451, Ha'il, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, 55473, Ha'il, Saudi Arabia
| | - Abdulmohsen Khalaf Dhahi Alsukaibi
- Department of Chemistry, College of Science, University of Ha'il, 81451, Ha'il, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, 55473, Ha'il, Saudi Arabia
| | - Ahmed A Al-Otaibi
- Department of Chemistry, College of Science, University of Ha'il, 81451, Ha'il, Saudi Arabia
- Medical and Diagnostic Research Centre, University of Ha'il, 55473, Ha'il, Saudi Arabia
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, People's Republic of China.
| |
Collapse
|
16
|
Zhuang J, Ma Z, Li N, Chen H, Yang L, Lu Y, Guo K, Zhao N, Tang BZ. Molecular Engineering of Plasma Membrane and Mitochondria Dual-Targeted NIR-II AIE Photosensitizer Evoking Synergetic Pyroptosis and Apoptosis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309488. [PMID: 37988801 DOI: 10.1002/adma.202309488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/17/2023] [Indexed: 11/23/2023]
Abstract
Phototherapy provides a noninvasive and spatiotemporal controllable paradigm to inhibit the evasion of the programmed cell death (PCD) of tumors. However, conventional photosensitizers (PSs) often induce a single PCD process, resulting in insufficient photodamage and severely impeding their application scopes. In this study, molecular engineering is conducted by adjusting electron donors to develop an aggregation-induced NIR-II emissive PS (DPITQ) for plasma membrane and mitochondria dual-targeted tumor therapy by evoking synergetic pyroptosis and apoptosis. DPITQ displays boosted type I and II reactive oxygen species generation as well as a high photothermal conversion efficacy (43%) after laser irradiation of 635 nm. The excellent biocompatibility and appropriate lipophilicity help the DPITQ to specifically anchor in the plasma membrane and mitochondria of cancer cells. Furthermore, the photosensitized DPITQ can disrupt the intact plasma membrane and cause mitochondrial dysfunction, ultimately causing concurrent pyroptosis and apoptosis to suppress cancer cell proliferation even under hypoxia. It is noteworthy that the DPITQ nanoparticles (NPs) present clear NIR-II fluorescence imaging capability on the venous vessels of nude mice. Notably, the DPITQ NPs exert efficient NIR-II fluorescence imaging-guided phototherapy both in multicellular tumor spheroids and in vivo, causing maximum destruction to tumors but minimum adverse effects to normal tissue.
Collapse
Affiliation(s)
- Jiabao Zhuang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Zhedong Ma
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Nan Li
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Huan Chen
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Lijin Yang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Ying Lu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Keyi Guo
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Na Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Key Laboratory of Macromolecular Science of Shaanxi Province, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Ben Zhong Tang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Shenzhen, 518172, P. R. China
| |
Collapse
|
17
|
Xie Y, Li Z, Zhao C, Lv R, Li Y, Zhang Z, Teng M, Wan Q. Recent advances in aggregation-induced emission-active type I photosensitizers with near-infrared fluorescence: From materials design to therapeutic platform fabrication. LUMINESCENCE 2024; 39:e4621. [PMID: 38044321 DOI: 10.1002/bio.4621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 12/05/2023]
Abstract
Near-infrared (NIR) fluorescence imaging-guided photodynamic therapy (PDT) technology plays an important role in treating various diseases and still attracts increasing research interests for developing novel photosensitizers (PSs) with outstanding performances. Conventional PSs such as porphyrin and rhodamine derivatives have easy self-aggregation properties in the physiological environment due to their inherent hydrophobic nature caused by their rigid molecular structure that induces strong intermolecular stacking π-π interaction, leading to serious fluorescence quenching and cytotoxic reactive oxygen species (ROS) reduction. Meanwhile, hypoxia is an inherent barrier in the microenvironment of solid tumors, seriously restricting the therapeutic outcome of conventional PDT. Aforementioned disadvantages should be overcome urgently to enhance the therapeutic effect of PSs. Novel NIR fluorescence-guided type I PSs with aggregation-induced emission (AIE), which features the advantages of improving fluorescent intensity and ROS generation efficiency at aggregation as well as outstanding oxygen tolerance, bring hope for resolving aforementioned problems simultaneously. At present, plenty of research works fully demonstrates the advancement of AIE-active PDT based on type I PSs. In this review, cutting-edge advances focusing on AIE-active NIR type I PSs that include the aspects of the photochemical mechanism of type I ROS generation, various molecular structures of reported type I PSs with NIR fluorescence and their design strategies, and typical anticancer applications are summarized. Finally, a brief conclusion is obtained, and the underlying challenges and prospects of AIE-active type I PSs are proposed.
Collapse
Affiliation(s)
- Yili Xie
- College of Ecology and Environment, Yuzhang Normal University, Nanchang, China
| | - Zhijia Li
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Chunhui Zhao
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, China
| | - Ruizhi Lv
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, China
| | - Yan Li
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, China
| | - Zhihong Zhang
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, China
| | - Muzhou Teng
- The Second Clinical Medical College of Lanzhou University, Lanzhou University Second Hospital, Key Laboratory of the Digestive System Tumors of Gansu Province, Lanzhou, China
| | - Qing Wan
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, China
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates (South China University of Technology), Guangzhou, China
| |
Collapse
|