1
|
Li Q, Yan C, Zhang P, Wang P, Wang K, Yang W, Cheng L, Dang D, Cao L. Tetraphenylethene-Based Molecular Cage with Coenzyme FAD: Conformationally Isomeric Complexation toward Photocatalysis-Assisted Photodynamic Therapy. J Am Chem Soc 2024. [PMID: 39433428 DOI: 10.1021/jacs.4c09508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Flavin adenine dinucleotide (FAD), serving as a light-absorbing coenzyme factor, can undergo conformationally isomeric complexation within different enzymes to form various enzyme-coenzyme complexes, which exhibit photocatalytic functions that play a crucial role in physiological processes. Constructing an artificial photofunctional system using FAD or its derivatives can not only develop biocompatible photocatalytic systems with excellent activities but also further enhance our understanding of the role of FAD in biological systems. Here, we demonstrate a supramolecular approach for constructing an artificial enzyme-coenzyme-type host-guest complex with photoinduced catalytic function in water. First, we have designed and synthesized a water-soluble tetraphenylethene (TPE)-based octacationic molecular cage (1) with a large and flexible cavity, which can adaptively encapsulate with two FAD molecules with "U-shaped" conformation (uFAD) to form a 1:2 host-guest complex (1⊃uFAD2) in water. Second, based on the conformationally isomeric complexation of FAD within 1, the 1⊃uFAD2 complex facilitates electron and energy transfers to molecular oxygen upon the white-light illumination, efficiently producing reactive oxygen species (ROS) such as superoxide radical (O2•-) and singlet oxygen (1O2). To our knowledge, the 1⊃uFAD2 complex acts as a photocatalyst to achieve the highest turnover frequency (TOF) of 35.6 min-1 for the photocatalytic oxidation reaction of NADH via a photoinduced superoxide radical catalysis mechanism in an aqueous medium. At last, combining the cytotoxic effects of ROS and the disruption of the intracellular redox balance involving NADH, 1⊃uFAD2 as a supramolecular photosensitizer displays an excellent oxygen-independent photocatalysis-assisted photodynamic therapy in hypoxic tumors.
Collapse
Affiliation(s)
- Qingfang Li
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Chaochao Yan
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Peijuan Zhang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Pingxia Wang
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Kaige Wang
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Wanni Yang
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Lin Cheng
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| | - Dongfeng Dang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Liping Cao
- College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China
| |
Collapse
|
2
|
Armstrong L, Chang SL, Clements N, Hirani Z, Kimberly LB, Odoi-Adams K, Suating P, Taylor HF, Trauth SA, Urbach AR. Molecular recognition of peptides and proteins by cucurbit[ n]urils: systems and applications. Chem Soc Rev 2024. [PMID: 39415690 PMCID: PMC11484504 DOI: 10.1039/d4cs00569d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Indexed: 10/19/2024]
Abstract
The development of methodology for attaching ligand binding sites to proteins of interest has accelerated biomedical science. Such protein tags have widespread applications as well as properties that significantly limit their utility. This review describes the mechanisms and applications of supramolecular systems comprising the synthetic receptors cucurbit[7]uril (Q7) or cucurbit[8]uril (Q8) and their polypeptide ligands. Molecular recognition of peptides and proteins occurs at sites of 1-3 amino acids with high selectivity and affinity via several distinct mechanisms, which are supported by extensive thermodynamic and structural studies in aqueous media. The commercial availability, low cost, high stability, and biocompatibility of these synthetic receptors has led to the development of myriad applications. This comprehensive review compiles the molecular recognition studies and the resulting applications with the goals of providing a valuable resource to the community and inspiring the next generation of innovation.
Collapse
Affiliation(s)
- Lilyanna Armstrong
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Sarah L Chang
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Nia Clements
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Zoheb Hirani
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Lauren B Kimberly
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Keturah Odoi-Adams
- Department of Chemistry and Physics, Southwestern Oklahoma State University, Weatherford, OK, 73096, USA
| | - Paolo Suating
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Hailey F Taylor
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Sara A Trauth
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| | - Adam R Urbach
- Department of Chemistry, Trinity University, San Antonio, TX, 78212, USA.
| |
Collapse
|
3
|
Wang B, Liu Y, Chen X, Liu XT, Liu Z, Lu C. Aggregation-induced emission-active supramolecular polymers: from controlled preparation to applications. Chem Soc Rev 2024; 53:10189-10215. [PMID: 39229831 DOI: 10.1039/d3cs00017f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Supramolecular polymers are typical self-assemblies, in which repeating monomer units are bonded together with dynamic and reversible noncovalent interactions. Supramolecular polymers can combine the advantages of polymer science and supramolecular chemistry. Aggregation-induced emission (AIE) means that a molecule remains faintly emissive in the dispersed state but intensively luminescent in a highly aggregated state. AIE has brought new opportunities and further development potential to the field of polymeric chemistry. The integration of AIE luminogens with supramolecular interactions can provide new vitality for supramolecular polymers. Therefore, it is essential for scientists to understand the preparation and applications of AIE-active supramolecular polymers. This review focuses on the recent advanced progress in the preparation of AIE-active supramolecular polymers. In addition, we summarize the newly developed supramolecular polymers with an AIE nature and their applications in chemical sensing, and in vitro and in vivo imaging, as well as the visualization of their structure and properties. Finally, the development trends and challenges of AIE-active supramolecular polymers are prospected.
Collapse
Affiliation(s)
- Beibei Wang
- Pingyuan Laboratory, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Yuhao Liu
- Pingyuan Laboratory, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xueqian Chen
- Pingyuan Laboratory, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Xiao-Ting Liu
- Pingyuan Laboratory, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Zhongyi Liu
- Pingyuan Laboratory, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Chao Lu
- Pingyuan Laboratory, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
4
|
Gao RT, Li SY, Zong Y, Chen Z, Liu N, Wu ZQ. Supramolecular Polymer Frameworks with Controlled and Uniform Pore Apertures. Angew Chem Int Ed Engl 2024; 63:e202410010. [PMID: 38926253 DOI: 10.1002/anie.202410010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Porous frameworks with controlled pore structure and tunable aperture are greatly demanded. However, precise synthesis of this kind of materials is a formidable challenge. Herein, we report the fabrication of two-dimensional (2D) supramolecular polymer frameworks using a precisely synthesized rod-like helical polyisocyanide as link. Four three-arm star-shaped polyisocyanides with the degree of the polymerization of 10, 20, 30 and 40, and having 2-ureido-4[1H]-pyrimidinone (UPy) terminals were synthesized. 2D-Crystalline polymer frameworks with apertures of 5.3, 10.1, 13.9, and 19.1 nm were respectively obtained through intermolecular hydrogen bonding interaction between the terminal Upy units. The pore aperture is dependent on the length of polyisocyanide backbone. Thus, well-defined supramolecular polymer frameworks with controlled and uniform hexagonal pores were obtained, as proved by small-angle X-ray scattering (synchrotron radiation facility), atomic force microscopy, and Brunauer-Emmett-Teller analyses. The frameworks with uniform large pore aperture were used to purify nanomaterials and immobilize biomacromolecules. For instance, the membranes of the polymer frameworks could size-fractionation of silver nanoparticles into uniform nanoparticles with very low dispersity. The frameworks with large aperture facilitated the inclusion of myoglobin and enhanced the stability and catalytic activity.
Collapse
Affiliation(s)
- Run-Tan Gao
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Shi-Yi Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yang Zong
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zheng Chen
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Na Liu
- The School of Pharmaceutical Sciences, Jilin University, Changchun, 130021, Jilin Province, China
| | - Zong-Quan Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
5
|
Li Q, Tan LL, Shang L. Single-crystal supramolecular organic framework with super-adaptation. Sci Bull (Beijing) 2024; 69:2670-2674. [PMID: 39060218 DOI: 10.1016/j.scib.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/30/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Affiliation(s)
- Qiang Li
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Li-Li Tan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
| |
Collapse
|
6
|
Lu M, Li P, Dong X, Jiang Z, Ren S, Yao J, Dong H, Zhao YS. Adaptive Helical Chirality in Supramolecular Microcrystals for Circularly Polarized Lasing. Angew Chem Int Ed Engl 2024; 63:e202408619. [PMID: 38924245 DOI: 10.1002/anie.202408619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/18/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
Chiral organic molecules offer a promising platform for exploring circularly polarized lasing, which, however, faces a great challenge that the spatial separation of molecular chiral and luminescent centers limits chiroptical activity. Here we develop a helically chiral supramolecular system with completely overlapped chiral and luminescent units for realizing high-performance circularly polarized lasing. Adaptive helical chirality is obtained by incorporating chiral agents into organic microcrystals. Benefiting from the efficient coupling of stimulated emission with the adaptive helical chirality, the supramolecular microcrystals enable high-performance circularly polarized lasing emission with dissymmetry factors up to ~0.7. This work opens up the way to rational design of chiral organic materials for circularly polarized lasing.
Collapse
Affiliation(s)
- Miaosen Lu
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Penghao Li
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyu Dong
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhengjun Jiang
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shizhe Ren
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiannian Yao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyun Dong
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Sheng Zhao
- Key Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Li Q, Gao W, Wang Z, Liu W, Fu Y, Wang X, Tan LL, Shang L, Yang YW. Guest-Induced Helical Superstructure from a Gold Nanocluster-Based Supramolecular Organic Framework Enables Efficient Catalysis. ACS NANO 2024; 18:22548-22559. [PMID: 39110641 DOI: 10.1021/acsnano.4c08337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Mimicking hierarchical assembly in nature to exploit atomically precise artificial systems with complex structures and versatile functions remains a long-standing challenge. Herein, we report two single-crystal supramolecular organic frameworks (MSOF-4 and MSOF-5) based on custom-designed atomically precise gold nanoclusters Au11(4-Mpy)3(PPh3)7, showing distinct and intriguing host-guest adaptation behaviors toward 1-/2-bromopropane (BPR) isomers. MSOF-4 exhibits sev topology and cylindrical channels with 4-mercaptopyridine (4-Mpy) ligands matching well with guest 1-BPR. Due to the confinement effect, solid MSOF-4 undergoes significant structural change upon selective adsorption of 1-BPR vapor over 2-BPR, resulting in strong near-infrared fluorescence. Single-crystal X-ray diffraction reveals that Au11(4-Mpy)3(PPh3)7 in MSOF-4 transforms into Au11Br3(PPh3)7 upon ligand exchange with 1-BPR, resulting in 1-BPR@MSOF-6 single crystals with a rarely reported helical assembly structure. Significantly, the double-helical structure of MSOF-6 facilitates efficient catalysis of the electron transfer (ET) reaction, resulting in a nearly 6 times increase of catalytic rates compared with MSOF-4. In sharp contrast, solid MSOF-5 possesses chb topology and cage-type channels with narrow windows, showing excellent selective physical adsorption toward 1-BPR vapor but a nonfluorescent feature upon guest adsorption. Our results demonstrate a powerful strategy for developing advanced assemblies with high-order complexity and engineering their functions in atomic precision.
Collapse
Affiliation(s)
- Qiang Li
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Wenxing Gao
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Zijian Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Wenfeng Liu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Yu Fu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Xin Wang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin Univeersity, 2699 Qianjin Street ,Changchun 130012, P. R. China
| | - Li-Li Tan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Li Shang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, P. R. China
| | - Ying-Wei Yang
- International Joint Research Laboratory of Nano-Micro Architecture Chemistry, College of Chemistry, Jilin Univeersity, 2699 Qianjin Street ,Changchun 130012, P. R. China
| |
Collapse
|
8
|
Séjourné S, Labrunie A, Dalinot C, Canevet D, Guechaichia R, Bou Zeid J, Benchohra A, Cauchy T, Brosseau A, Allain M, Chamignon C, Viger-Gravel J, Pintacuda G, Carré V, Aubriet F, Vanthuyne N, Sallé M, Goeb S. Chiral Truxene-Based Self-Assembled Cages: Triple Interlocking and Supramolecular Chirogenesis. Angew Chem Int Ed Engl 2024; 63:e202400961. [PMID: 38284742 DOI: 10.1002/anie.202400961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 01/30/2024]
Abstract
Incorporating chiral elements in host-guest systems currently attracts much attention because of the major impact such structures may have in a wide range of applications, from pharmaceuticals to materials science and beyond. Moreover, the development of multi-responsive and -functional systems is highly desirable since they offer numerous benefits. In this context, we describe herein the construction of a metal-driven self-assembled cage that associates a chiral truxene-based ligand and a bis-ruthenium complex. The maximum separation between both facing chiral units in the assembly is fixed by the intermetallic distance within the lateral bis-ruthenium complex (8.4 Å). The resulting chiral cavity was shown to encapsulate polyaromatic guest molecules, but also to afford a chiral triply interlocked [2]catenane structure. The formation of the latter occurs at high concentration, while its disassembly could be achieved by the addition of a planar achiral molecule. Interestingly the planar achiral molecule exhibits induced circular dichroism signature when trapped within the chiral cavity, thus demonstrating the ability of the cage to induce supramolecular chirogenesis.
Collapse
Affiliation(s)
- Simon Séjourné
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| | | | | | - David Canevet
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| | | | | | | | - Thomas Cauchy
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| | | | - Magali Allain
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| | - Cécile Chamignon
- Centre de RMN à Très Hauts Champs, Université de Lyon (UMR 5082 CNRS/Ecole Normale Supérieure/Université Claude Bernard Lyon 1), 69100, Villeurbanne, France
| | - Jasmine Viger-Gravel
- Centre de RMN à Très Hauts Champs, Université de Lyon (UMR 5082 CNRS/Ecole Normale Supérieure/Université Claude Bernard Lyon 1), 69100, Villeurbanne, France
| | - Guido Pintacuda
- Centre de RMN à Très Hauts Champs, Université de Lyon (UMR 5082 CNRS/Ecole Normale Supérieure/Université Claude Bernard Lyon 1), 69100, Villeurbanne, France
| | - Vincent Carré
- Université de Lorraine, LCP-A2MC, F-57000, Metz, France
| | | | - Nicolas Vanthuyne
- Aix Marseille Université, CNRS, FSCM, Chiropole, F-13397, Marseille, France
| | - Marc Sallé
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| | - Sébastien Goeb
- Univ Angers, CNRS, MOLTECH-ANJOU, F-49000, Angers, France
| |
Collapse
|
9
|
Cui D, Bai F, Zhang L, Li W, Zhang Y, Wang K, Wu M, Sun C, Zang H, Zou B, Wang X, Su Z. Piezofluorochromism in Hierarchical Porous π-stacked Supermolecular Spring Frameworks from Aromatic Chiral Cages. Angew Chem Int Ed Engl 2024; 63:e202319815. [PMID: 38299255 DOI: 10.1002/anie.202319815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/19/2024] [Accepted: 02/01/2024] [Indexed: 02/02/2024]
Abstract
Piezochromic materials that exhibit pressure-dependent luminescence variations are attracting interest with wide potential applications in mechanical sensors, anticounterfeiting and storage devices. Crystalline porous materials (CPMs) have been widely studied in piezochromism for highly tunable luminescence. Nevertheless, reversible and high-contrast emission response with a wide pressure range is still challenging. Herein, the first example of hierarchical porous cage-based πOF (Cage-πOF-1) with spring structure was synthesized by using aromatic chiral cages as building blocks. Its elastic properties evaluated based on the bulk modulus (9.5 GPa) is softer than most reported CPMs and the collapse point (20.0 GPa) significantly exceeds ever reported CPMs. As smart materials, Cage-πOF-1 displays linear pressure-dependent emission and achieves a high-contrast emission difference up to 154 nm. Pressure-responsive limit is up to 16 GPa, outperforming the CPMs reported so far. Dedicated experiments and density functional theory (DFT) calculations illustrate that π-π interactions-dominated controllable structural shrinkage and porous-spring-structure-mediated elasticity is responsible for the outstanding piezofluorochromism.
Collapse
Affiliation(s)
- Dongxu Cui
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130024, China
| | - Fuquan Bai
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130024, China
| | - Long Zhang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, Jilin, 130024, China
| | - Wei Li
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130024, China
| | - Yuxiao Zhang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Kai Wang
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, Jilin, 130024, China
| | - Min Wu
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252000, P. R. China
| | - Chunyi Sun
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Hongying Zang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
| | - Bo Zou
- State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun, Jilin, 130024, China
| | - Xinlong Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Department of Chemistry, Northeast Normal University, Changchun, Jilin, 130024, China
- Key Laboratory of Advanced Materials of Tropical Island Resources, Ministry of Education, Hainan University, Haikou, Hainan, 570228, China
| | - Zhongmin Su
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, Jilin, 130024, China
| |
Collapse
|
10
|
Yan C, Li Q, Wang K, Yang W, Han J, Li Y, Dong Y, Chu D, Cheng L, Cao L. "Gear-driven"-type chirality transfer of tetraphenylethene-based supramolecular organic frameworks for peptides in water. Chem Sci 2024; 15:3758-3766. [PMID: 38455015 PMCID: PMC10915834 DOI: 10.1039/d3sc06349f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/01/2024] [Indexed: 03/09/2024] Open
Abstract
Chirality transfer for natural chiral biomolecules can reveal the indispensable role of chiral structures in life and can be used to develop the chirality-sensing biomolecular recognition. Here, we report the synthesis and characterization of a series of achiral supramolecular organic frameworks (SOF-1, SOF-2, and SOF-3), constructed from cucurbit[8]uril (CB[8]) and tetraphenylethene (TPE) derivatives (1, 2, and 3), respectively, as chirality-sensing platforms to explore their chirality transfer mechanism for peptides in water. Given the right-handed (P) and left-handed (M) rotational conformation of TPE units and the selective binding of CB[8] to aromatic amino acids, these achiral SOFs can be selectively triggered in water by peptides containing N-terminal tryptophan (W) and phenylalanine (F) residues into their P- or M-rotational conformation, exhibiting significantly different circular dichroism (CD) spectra. Although various peptides have the same l-type chiral configuration, they can induce positive CD signals of SOF-1 and negative CD signals of SOF-2 and SOF-3, respectively. Based on the structural analysis of the linkage units between CB[8] and TPE units in these SOFs, a "gear-driven"-type chirality transfer mechanism has been proposed to visually illustrate the multiple-step chirality transfer process from the recognition site in the CB[8]'s cavity to TPE units. Furthermore, by utilizing the characteristic CD signals generated through the "gear-driven"-type chirality transfer, these SOFs can serve as chiroptical sensor arrays to effectively recognize and distinguish various peptides based on their distinctive CD spectra.
Collapse
Affiliation(s)
- Chaochao Yan
- College of Chemistry and Materials Science, Northwest University Xi'an 710069 China
| | - Qingfang Li
- College of Chemistry and Materials Science, Northwest University Xi'an 710069 China
| | - Kaige Wang
- College of Chemistry and Materials Science, Northwest University Xi'an 710069 China
| | - Wanni Yang
- College of Chemistry and Materials Science, Northwest University Xi'an 710069 China
| | - Jingyu Han
- College of Chemistry and Materials Science, Northwest University Xi'an 710069 China
| | - Yawen Li
- College of Chemistry and Materials Science, Northwest University Xi'an 710069 China
| | - Yunhong Dong
- College of Chemistry and Materials Science, Northwest University Xi'an 710069 China
| | - Dake Chu
- Department of Gastroenterology, The First Affiliated Hospital of Xi'an Jiaotong University Xi'an 710061 China
| | - Lin Cheng
- College of Chemistry and Materials Science, Northwest University Xi'an 710069 China
| | - Liping Cao
- College of Chemistry and Materials Science, Northwest University Xi'an 710069 China
| |
Collapse
|