1
|
Zou JF, Li S, Liu P, Zhao Y, Wang T, Pan YX, Yan X. Strategy in Promoting Visible Light Absorption, Charge Separation, CO 2 Adsorption and Proton Production for Efficient Photocatalytic CO 2 Reduction with H 2O. Chem Asian J 2024:e202400781. [PMID: 39418204 DOI: 10.1002/asia.202400781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/14/2024] [Indexed: 10/19/2024]
Abstract
Solar-energy-driven photocatalytic CO2 reduction by H2O to high-valuable carbon-containing chemicals has become one of the greatest concerns in both scientific and industrial communities, due to its potential in solving energy and environmental problems. However, efficiency of photocatalytic CO2 reduction by H2O is still far below the needs of large-scale applications. The reduction efficiency is closely related to ability of photocatalysts in absorbing visible light which is the main part of sunlight (44 %), separating photogenerated electron-hole pairs, adsorbing CO2 and producing protons for reducing CO2. Thus, photocatalysts with enhanced visible light absorption, electron-hole separation, CO2 adsorption and proton production are highly desired. Herein, we aim to provide a picture of recent progresses in improving ability of photocatalysts in visible light absorption, electron-hole separation, CO2 adsorption and proton production, and give an outlook for future researches associated with photocatalytic CO2 reduction by H2O.
Collapse
Affiliation(s)
- Jia-Fu Zou
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, People's Republic of China
| | - Sha Li
- College of Textile Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, People's Republic of China
| | - Peng Liu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yiyi Zhao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Tingwei Wang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yun-Xiang Pan
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xiaoliang Yan
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, People's Republic of China
| |
Collapse
|
2
|
Wei C, Zhang Y, Qu Y, Hua W, Jia Z, Lu J, Xie G, Xiao J, Hu H, Yang Y, Liu JQ, Bai J, Xue G. Dual Channel H 2O 2 Photosynthesis in Pure Water over S-Scheme Heterojunction Cs 3PMo 12/CC Boosted by Proton and Electron Reservoirs. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401485. [PMID: 38712455 DOI: 10.1002/smll.202401485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 04/24/2024] [Indexed: 05/08/2024]
Abstract
Dual channel photo-driven H2O2 production in pure water on small-scale on-site setups is a promising strategy to provide low-concentrated H2O2 whenever needed. This process suffers, however, strongly from the fast recombination of photo-generated charge carriers and the sluggish oxidation process. Here, insoluble Keggin-type cesium phosphomolybdate Cs3PMo12O40 (abbreviated to Cs3PMo12) is introduced to carbonized cellulose (CC) to construct S-scheme heterojunction Cs3PMo12/CC. Dual channel H2O2 photosynthesis from both H2O oxidation and O2 reduction in pure water has been thus achieved with the production rate of 20.1 mmol L-1 gcat. -1 h-1, apparent quantum yield (AQY) of 2.1% and solar-to-chemical conversion (SCC) efficiency of 0.050%. H2O2 accumulative concentration reaches 4.9 mmol L-1. This high photocatalytic activity is guaranteed by unique features of Cs3PMo12/CC, namely, S-scheme heterojunction, electron reservoir, and proton reservoir. The former two enhance the separation of photo-generated charge carriers, while the latter speeds up the torpid oxidation process. In situ experiments reveal that H2O2 is formed via successive single-electron transfer in both channels. In real practice, exposing the reaction system under natural sunlight outdoors successfully results in 0.24 mmol L-1 H2O2. This work provides a key practical strategy for designing photocatalysts in modulating redox half-reactions in photosynthesis.
Collapse
Affiliation(s)
- Chong Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Ave., Xi'an, 710127, China
| | - Yu Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Ave., Xi'an, 710127, China
| | - Yunteng Qu
- State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & PhotonTechnology, Northwest University, Xi'an, 710069, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, Northwest University, Xi'an, 710127, China
| | - Wenbo Hua
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Ave., Xi'an, 710127, China
| | - Zixian Jia
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian, 116045, China
| | - Jiangbo Lu
- School of Physics & Information Technology, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Gang Xie
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Ave., Xi'an, 710127, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, Northwest University, Xi'an, 710127, China
| | - Jianming Xiao
- Department College of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Huaiming Hu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Ave., Xi'an, 710127, China
| | - Ying Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Ave., Xi'an, 710127, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, Northwest University, Xi'an, 710127, China
| | - Ji-Quan Liu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Ave., Xi'an, 710127, China
- Shaanxi Key Laboratory for Carbon Neutral Technology, Northwest University, Xi'an, 710127, China
| | - Jinbo Bai
- CentraleSupélec, ENS Paris-Saclay, CNRS, LMPS-Laboratoire de Mécanique Paris-Saclay, Université Paris-Saclay, 8-10 rue Joliot-Curie, Gif-sur-Yvette, 91190, France
| | - Ganglin Xue
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Ave., Xi'an, 710127, China
| |
Collapse
|
3
|
Wang P, Yang F, Qu J, Cai Y, Yang X, Li CM, Hu J. Recent Advances and Challenges in Efficient Selective Photocatalytic CO 2 Methanation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400700. [PMID: 38488718 DOI: 10.1002/smll.202400700] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/04/2024] [Indexed: 08/09/2024]
Abstract
Solar-driven carbon dioxide (CO2) methanation holds significant research value in the context of carbon emission reduction and energy crisis. However, this eight-electron catalytic reaction presents substantial challenges in catalytic activity and selectivity. In this regard, researchers have conducted extensive exploration and achieved significant developments. This review provides an overview of the recent advances and challenges in efficient selective photocatalytic CO2 methanation. It begins by discussing the fundamental principles and challenges in detail, analyzing strategies for improving the efficiency of photocatalytic CO2 conversion to CH4 comprehensively. Subsequently, it outlines the recent applications and advanced characterization methods for photocatalytic CO2 methanation. Finally, this review highlights the prospects and opportunities in this area, aiming to inspire CO2 conversion into high-value CH4 and shed light on the research of catalytic mechanisms.
Collapse
Affiliation(s)
- Piyan Wang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Fengyi Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jiafu Qu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yahui Cai
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Xiaogang Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Chang Ming Li
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jundie Hu
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
4
|
Lu L, He X, Zhu X, Lv C, Liu Z, Pei L, Yan S, Zou Z. Strong Electronic Interaction Enables Enhanced Solar-Driven CO 2 Reduction into Selective CH 4 on SrTiO 3 with Photodeposited Pt 2+ Sites. Inorg Chem 2024; 63:13295-13303. [PMID: 38982625 DOI: 10.1021/acs.inorgchem.4c01053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Targeting selective CO2 photoreduction into CH4 remains a challenge due to the sluggish reaction kinetics and poor hydrogenation ability of the unstable intermediate. Here, the active Pt2+ sites were photodeposited on the SrTiO3 photocatalyst, which was well demonstrated to manipulate the CH4 product selectivity. The results showed that SrTiO3 mainly yielded the CO (6.98 μmol g-1) product with poor CH4 (0.17 μmol g-1). With the Pt2+ modification, 100% CH4 selectivity could be obtained with an optimized yield rate of 8.07 μmol g-1. The prominent enhancement resulted from the following roles: (1) the strong electronic interaction between the Pt2+ cocatalyst and SrTiO3 could prompt efficient separation of the photoelectron-hole pairs. (2) The Pt2+ sites were active to capture and activate inert CO2 into HCO3- and CO32- species and allowed fast *COOH formation with the lowered reaction barrier. (3) Compared with SrTiO3, the formed *CO species could be captured tightly on the Pt2+ cocatalyst surface for generating the *CH2 intermediate by the following electron-proton coupling reaction, thus leading to the CH4 product with 100% selectivity.
Collapse
Affiliation(s)
- Lei Lu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
- Eco-Materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | - Xiangqing He
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaopeng Zhu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Changyu Lv
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zeyu Liu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lang Pei
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Shicheng Yan
- Eco-Materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| | - Zhigang Zou
- Eco-Materials and Renewable Energy Research Center (ERERC), National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
| |
Collapse
|
5
|
Meng Z, Zhang J, Jiang C, Trapalis C, Zhang L, Yu J. Dynamics of Electron Transfer in CdS Photocatalysts Decorated with Various Noble Metals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308952. [PMID: 38072789 DOI: 10.1002/smll.202308952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/21/2023] [Indexed: 05/25/2024]
Abstract
To address charge recombination in photocatalysis, the prevalent approach involves the use of noble metal cocatalysts. However, the precise factors influencing this performance variability based on cocatalyst selection have remained elusive. In this study, CdS hollow spheres loaded with distinct noble metal nanoparticles (Pt, Au, and Ru) are investigated by femtosecond transient absorption (fs-TA) spectroscopy. A more pronounced internal electric field leads to the creation of a larger Schottky barrier, with the order Pt-CdS > Au-CdS > Ru-CdS. Owing to these varying Schottky barrier heights, the interface electron transfer rate (Ke) and efficiency (ηe) of metal-CdS in acetonitrile (ACN) exhibit the following trend: Ru-CdS > Au-CdS > Pt-CdS. However, the trends of Ke and ηe for metal-CdS in water are different (Ru-CdS > Pt-CdS > Au-CdS) due to the influence of water, leading to the consumption of photogenerated electrons and affecting the metal/CdS interface state. Although Ru-CdS displays the highest Ke and ηe, its overall photocatalytic performance, particularly in H2 production, lags behind that of Pt-CdS due to the electron backflow from Ru to CdS. This work offers a fresh perspective on the origin of performance differences and provides valuable insights for cocatalyst design and construction.
Collapse
Affiliation(s)
- Zheng Meng
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Jianjun Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Chenchen Jiang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Christos Trapalis
- Materials Laboratory, Institute of Nanoscience and Nanotechnology, NCSR Demokritos, Agia Paraskevi, Atttikis, 153 43, Greece
| | - Liuyang Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| |
Collapse
|
6
|
Shen C, Meng XY, Zou R, Sun K, Wu Q, Pan YX, Liu CJ. Boosted Sacrificial-Agent-Free Selective Photoreduction of CO 2 to CH 3OH by Rhenium Atomically Dispersed on Indium Oxide. Angew Chem Int Ed Engl 2024; 63:e202402369. [PMID: 38446496 DOI: 10.1002/anie.202402369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/07/2024]
Abstract
Solar-energy-driven photoreduction of CO2 is promising in alleviating environment burden, but suffers from low efficiency and over-reliance on sacrificial agents. Herein, rhenium (Re) is atomically dispersed in In2O3 to fabricate a 2Re-In2O3 photocatalyst. In sacrificial-agent-free photoreduction of CO2 with H2O, 2Re-In2O3 shows a long-term stable efficiency which is enhanced by 3.5 times than that of pure In2O3 and is also higher than those on Au-In2O3, Ag-In2O3, Cu-In2O3, Ir-In2O3, Ru-In2O3, Rh-In2O3 and Pt-In2O3 photocatalysts. Moreover, carbon-based product of the photoreduction overturns from CO on pure In2O3 to CH3OH on 2Re-In2O3. Re promotes charge separation, H2O dissociation and CO2 activation, thus enhancing photoreduction efficiency of CO2 on 2Re-In2O3. During the photoreduction, CO is a key intermediate. CO prefers to desorption rather than hydrogenation on pure In2O3, as CO binds to pure In2O3 very weakly. Re strengthens the interaction of CO with 2Re-In2O3 by 5.0 times, thus limiting CO desorption but enhancing CO hydrogenation to CH3OH. This could be the origin for photoreduction product overturn from CO on pure In2O3 to CH3OH on 2Re-In2O3. The present work opens a new way to boost sacrificial-agent-free photoreduction of CO2.
Collapse
Affiliation(s)
- Chenyang Shen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Xin-Yu Meng
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Rui Zou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Kaihang Sun
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Qinglei Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
| | - Yun-Xiang Pan
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chang-Jun Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, P. R. China
- Collaborative Innovation Center of Chemical Science & Engineering, Tianjin University, Tianjin, 300372, P. R. China
| |
Collapse
|
7
|
Wu P, Liu H, Xie Z, Xie L, Liu G, Xu Y, Chen J, Lu CZ. Excellent Charge Separation of NCQDs/ZnS Nanocomposites for the Promotion of Photocatalytic H 2 Evolution. ACS APPLIED MATERIALS & INTERFACES 2024; 16:16601-16611. [PMID: 38502203 DOI: 10.1021/acsami.3c15957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Carbon Quantum dots (CQDs) are widely studied because of their good optical and electronic characteristics and because they can easily generate photocarriers. Nitrogen-doped CQDs (NCQDs) may exhibit improved hydrophilic, optical, and electron-transfer properties, which are conducive to photocatalytic hydrogen evolution. In this paper, NCQD-modified ZnS catalysts were successfully prepared. Under the irradiation of the full spectrum, the H2 evolution rate of the optimal catalyst 0.25 wt % NCQDs/ZnS achieves 5.70 mmol g-1 h-1, which is 11.88, 43.84, and 5.14 times the values of ZnS (0.48 mmol g-1 h-1), NCQDs (0.13 mmol g-1 h-1), and CQDs/ZnS (1.11 mmol g-1 h-1), respectively. Furthermore, it shows good stability, indicating that the modification of NCQDs prevents the photocorrosion and oxidation of ZnS. The enhanced performance is due to NCQD loading, which promotes the separation of photogenerated carriers, optimizes the structures, and increases the specific surface area. This work highlights the fact that NCQD-modified ZnS may afford a new strategy to synthesize ZnS-based photocatalysts with enhanced H2 production performance.
Collapse
Affiliation(s)
- Panpan Wu
- School of Optoelectronics and Communication Engineering, Xiamen University of Technology, Xiamen 361024, China
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
- Fujian Provincial Key Laboratory of Optoelectronic Technology and Devices, Xiamen University of Technology, Xiamen 361024, China
| | - Haizhen Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Ziyu Xie
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Linjun Xie
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Guozhong Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yingchao Xu
- School of Optoelectronics and Communication Engineering, Xiamen University of Technology, Xiamen 361024, China
- Fujian Provincial Key Laboratory of Optoelectronic Technology and Devices, Xiamen University of Technology, Xiamen 361024, China
| | - Jing Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
| | - Can-Zhong Lu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Zhang H, Abe I, Oyumi T, Ishii R, Hara K, Izumi Y. Photocatalytic CO 2 Reduction Using Ti 3C 2X y (X = Oxo, OH, F, or Cl) MXene-ZrO 2: Structure, Electron Transmission, and the Stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6330-6341. [PMID: 38364790 DOI: 10.1021/acs.langmuir.3c03883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
CO2 photoreduction using a semiconductor-based photocatalyst is a promising option for completing a new carbon-neutral cycle. The short lifetime of charges generated owing to light energy is one of the most critical problems in further improving the performance of semiconductor-based photocatalysts. This study shows the structure, electron transmission, and stability of Ti3C2Xy (X = oxo, OH, F, or Cl) MXene combined with a ZrO2 photocatalyst. Using H2 as a reductant, the photocatalytic CO formation rate increased by 6.6 times to 4.6 μmol h-1 gcat-1 using MXene (3.0 wt %)-ZrO2 compared to that using ZrO2, and the catalytic route was confirmed using 13CO2 to form 13CO. In clear contrast, using H2O (gas) as a reductant, CH4 was formed as the major product using Ti3C2Xy MXene (5.0 wt %)-ZrO2 at the rate of 3.9 μmol h-1 gcat-1. Using 13CO2 and H2O, 12CH4, 12C2H6, and 12C3H8 were formed besides H212CO, demonstrating that the C source was the partial decomposition and hydrogenation of Ti3C2Xy. Using the atomic force and high-resolution electron microscopies, 1.6 nm thick Ti3C2Xy MXene sheets were observed, suggesting ∼3 stacked layers that are consistent with the Ti-C and Ti···Ti interatomic distances of 0.218 and 0.301 nm, respectively, forming a [Ti6C] octahedral coordination, and the major component as the X ligand was suggested to be F and OH/oxo, with the temperature increasing by 116 K or higher owing to the absorbed light energy, all based on the extended X-ray absorption fine structure analysis.
Collapse
Affiliation(s)
- Hongwei Zhang
- Chengdu Biogas Institute, Ministry of Agriculture and Rural Affairs, Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Renmin Nan Road, Chengdu 610041, People's Republic of China
| | - Ikki Abe
- Department of Chemistry, Graduate School of Science, Yayoi 1-33, Chiba 263-8522, Japan
| | - Tomoki Oyumi
- Department of Chemistry, Graduate School of Science, Yayoi 1-33, Chiba 263-8522, Japan
| | - Rento Ishii
- Department of Chemistry, Graduate School of Science, Yayoi 1-33, Chiba 263-8522, Japan
| | - Keisuke Hara
- Department of Chemistry, Graduate School of Science, Yayoi 1-33, Chiba 263-8522, Japan
| | - Yasuo Izumi
- Department of Chemistry, Graduate School of Science, Yayoi 1-33, Chiba 263-8522, Japan
| |
Collapse
|