1
|
de Visser SP, Wong HPH, Zhang Y, Yadav R, Sastri CV. Tutorial Review on the Set-Up and Running of Quantum Mechanical Cluster Models for Enzymatic Reaction Mechanisms. Chemistry 2024; 30:e202402468. [PMID: 39109881 DOI: 10.1002/chem.202402468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/07/2024] [Indexed: 10/09/2024]
Abstract
Enzymes turnover substrates into products with amazing efficiency and selectivity and as such have great potential for use in biotechnology and pharmaceutical applications. However, details of their catalytic cycles and the origins surrounding the regio- and chemoselectivity of enzymatic reaction processes remain unknown, which makes the engineering of enzymes and their use in biotechnology challenging. Computational modelling can assist experimental work in the field and establish the factors that influence the reaction rates and the product distributions. A popular approach in modelling is the use of quantum mechanical cluster models of enzymes that take the first- and second coordination sphere of the enzyme active site into consideration. These QM cluster models are widely applied but often the results obtained are dependent on model choice and model selection. Herein, we show that QM cluster models can give highly accurate results that reproduce experimental product distributions and free energies of activation within several kcal mol-1, regarded that large cluster models with >300 atoms are used that include key hydrogen bonding interactions and charged residues. In this tutorial review, we give general guidelines on the set-up and applications of the QM cluster method and discuss its accuracy and reproducibility. Finally, several representative QM cluster model examples on metal-containing enzymes are presented, which highlight the strength of the approach.
Collapse
Affiliation(s)
- Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Henrik P H Wong
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Yi Zhang
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Rolly Yadav
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| |
Collapse
|
2
|
Zhang E, Hirao H. Exploring the Bonding Nature of Iron(IV)-Oxo Species through Valence Bond Calculations and Electron Density Analysis. J Phys Chem A 2024; 128:7167-7176. [PMID: 39163412 DOI: 10.1021/acs.jpca.4c04335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Compound I (Cpd I) plays a pivotal role in substrate transformations within the catalytic cycle of cytochrome P450 enzymes (P450s). A key constituent of Cpd I is the iron(IV)-oxo unit, a structural motif also found in other heme enzymes and nonheme enzymes. In this study, we performed ab initio valence bond (VB) calculations, employing the valence bond self-consistent field (VBSCF) and breathing orbital valence bond (BOVB) methods, to unveil the bonding nature of this vital "Fe(IV)═O″ unit in bioinorganic chemistry. Comparisons were drawn with the triplet O2 molecule, which shares some electronic characteristics with iron(IV)-oxo. Additionally, Cpd I models of horseradish peroxidase (HRP) and catalase (CAT) were analyzed to assess the proximal ligand effect on the electronic structure of iron(IV)-oxo. Our VB analysis underscores the significant role of noncovalent resonance effects in shaping the iron(IV)-oxo bonding. The resonance stabilization within the π and σ frameworks occurs to comparable degrees, with additional stabilization resulting from resonance between VB structures from these frameworks. Furthermore, we elucidated the substantial influence of proximal and equatorial ligands in modulating the relative significance of different VB structures. Notably, in the presence of these ligands, iron(IV)-oxo is better described as iron(III)-oxyl or iron(II)-oxygen, displaying weak covalent character but enhanced by resonance effects. Although both species exhibit diradicaloid characters, resonance stabilization in iron(IV)-oxo is weaker than in O2. Further exploration using the Laplacian of electron density shows that, unlike O2, which exhibits a charge concentration region between its two oxygen atoms, iron(IV)-oxo species display a charge depletion region.
Collapse
Affiliation(s)
- Enhua Zhang
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| | - Hajime Hirao
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, P. R. China
| |
Collapse
|
3
|
Qureshi M, Mokkawes T, Cao Y, de Visser SP. Mechanism of the Oxidative Ring-Closure Reaction during Gliotoxin Biosynthesis by Cytochrome P450 GliF. Int J Mol Sci 2024; 25:8567. [PMID: 39201254 PMCID: PMC11354885 DOI: 10.3390/ijms25168567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
During gliotoxin biosynthesis in fungi, the cytochrome P450 GliF enzyme catalyzes an unusual C-N ring-closure step while also an aromatic ring is hydroxylated in the same reaction cycle, which may have relevance to drug synthesis reactions in biotechnology. However, as the details of the reaction mechanism are still controversial, no applications have been developed yet. To resolve the mechanism of gliotoxin biosynthesis and gain insight into the steps leading to ring-closure, we ran a combination of molecular dynamics and density functional theory calculations on the structure and reactivity of P450 GliF and tested a range of possible reaction mechanisms, pathways and models. The calculations show that, rather than hydrogen atom transfer from the substrate to Compound I, an initial proton transfer transition state is followed by a fast electron transfer en route to the radical intermediate, and hence a non-synchronous hydrogen atom abstraction takes place. The radical intermediate then reacts by OH rebound to the aromatic ring to form a biradical in the substrate that, through ring-closure between the radical centers, gives gliotoxin products. Interestingly, the structure and energetics of the reaction mechanisms appear little affected by the addition of polar groups to the model and hence we predict that the reaction can be catalyzed by other P450 isozymes that also bind the same substrate. Alternative pathways, such as a pathway starting with an electrophilic attack on the arene to form an epoxide, are high in energy and are ruled out.
Collapse
Affiliation(s)
| | | | | | - Sam P. de Visser
- Manchester Institute of Biotechnology, Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK (Y.C.)
| |
Collapse
|
4
|
Dias AHS, Cao Y, Skaf MS, de Visser SP. Machine learning-aided engineering of a cytochrome P450 for optimal bioconversion of lignin fragments. Phys Chem Chem Phys 2024; 26:17577-17587. [PMID: 38884162 DOI: 10.1039/d4cp01282h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Using machine learning, molecular dynamics simulations, and density functional theory calculations we gain insight into the selectivity patterns of substrate activation by the cytochromes P450. In nature, the reactions catalyzed by the P450s lead to the biodegradation of xenobiotics, but recent work has shown that fungi utilize P450s for the activation of lignin fragments, such as monomer and dimer units. These fragments often are the building blocks of valuable materials, including drug molecules and fragrances, hence a highly selective biocatalyst that can produce these compounds in good yield with high selectivity would be an important step in biotechnology. In this work a detailed computational study is reported on two reaction channels of two P450 isozymes, namely the O-deethylation of guaethol by CYP255A and the O-demethylation versus aromatic hydroxylation of p-anisic acid by CYP199A4. The studies show that the second-coordination sphere plays a major role in substrate binding and positioning, heme access, and in the selectivity patterns. Moreover, the local environment affects the kinetics of the reaction through lowering or raising barrier heights. Furthermore, we predict a site-selective mutation for highly specific reaction channels for CYP199A4.
Collapse
Affiliation(s)
- Artur Hermano Sampaio Dias
- Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
- Institute of Chemistry and Centre for Computing in Engineering & Sciences, University of Campinas, Campinas, SP 13083-861, Brazil
| | - Yuanxin Cao
- Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Munir S Skaf
- Institute of Chemistry and Centre for Computing in Engineering & Sciences, University of Campinas, Campinas, SP 13083-861, Brazil
| | - Sam P de Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
5
|
Zhou TP, Feng J, Wang Y, Li S, Wang B. Substrate Conformational Switch Enables the Stereoselective Dimerization in P450 NascB: Insights from Molecular Dynamics Simulations and Quantum Mechanical/Molecular Mechanical Calculations. JACS AU 2024; 4:1591-1604. [PMID: 38665654 PMCID: PMC11040706 DOI: 10.1021/jacsau.4c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/20/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024]
Abstract
P450 NascB catalyzes the coupling of cyclo-(l-tryptophan-l-proline) (1) to generate (-)-naseseazine C (2) through intramolecular C-N bond formation and intermolecular C-C coupling. A thorough understanding of its catalytic mechanism is crucial for the engineering or design of P450-catalyzed C-N dimerization reactions. By employing MD simulations, QM/MM calculations, and enhanced sampling, we assessed various mechanisms from recent works. Our study demonstrates that the most favorable pathway entails the transfer of a hydrogen atom from N7-H to Cpd I. Subsequently, there is a conformational change in the substrate radical, shifting it from the Re-face to the Si-face of N7 in Substrate 1. The Si-face conformation of Substrate 1 is stabilized by the protein environment and the π-π stacking interaction between the indole ring and heme porphyrin. The subsequent intermolecular C3-C6' bond formation between Substrate 1 radical and Substrate 2 occurs via a radical attack mechanism. The conformational switch of the Substrate 1 radical not only lowers the barrier of the intermolecular C3-C6' bond formation but also yields the correct stereoselectivity observed in experiments. In addition, we evaluated the reactivity of the ferric-superoxide species, showing it is not reactive enough to initiate the hydrogen atom abstraction from the indole NH group of the substrate. Our simulation provides a comprehensive mechanistic insight into how the P450 enzyme precisely controls both the intramolecular C-N cyclization and intermolecular C-C coupling. The current findings align with the available experimental data, emphasizing the pivotal role of substrate dynamics in governing P450 catalysis.
Collapse
Affiliation(s)
- Tai-Ping Zhou
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jianqiang Feng
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yongchao Wang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Shengying Li
- State
Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Binju Wang
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
6
|
Zhu C, D’Agostino C, de Visser SP. CO 2 Reduction by an Iron(I) Porphyrinate System: Effect of Hydrogen Bonding on the Second Coordination Sphere. Inorg Chem 2024; 63:4474-4481. [PMID: 38408891 PMCID: PMC10934816 DOI: 10.1021/acs.inorgchem.3c04246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/28/2024]
Abstract
Transforming CO2 into valuable materials is an important reaction in catalysis, especially because CO2 concentrations in the atmosphere have been growing steadily due to extensive fossil fuel usage. From an environmental perspective, reduction of CO2 to valuable materials should be catalyzed by an environmentally benign catalyst and avoid the use of heavy transition-metal ions. In this work, we present a computational study into a novel iron(I) porphyrin catalyst for CO2 reduction, namely, with a tetraphenylporphyrin ligand and analogues. In particular, we investigated iron(I) tetraphenylporphyrin with one of the meso-phenyl groups substituted with o-urea, p-urea, or o-2-amide groups. These substituents can provide hydrogen-bonding interactions in the second coordination sphere with bound ligands and assist with proton relay. Furthermore, our studies investigated bicarbonate and phenol as stabilizers and proton donors in the reaction mechanism. Potential energy landscapes for double protonation of iron(I) porphyrinate with bound CO2 are reported. The work shows that the bicarbonate bridges the urea/amide groups to the CO2 and iron center and provides a tight bonding pattern with strong hydrogen-bonding interactions that facilitates easy proton delivery and reduction of CO2. Specifically, bicarbonate provides a low-energy proton shuttle mechanism to form CO and water efficiently. Furthermore, the o-urea group locks bicarbonate and CO2 in a tight orientation and helps with ideal proton transfer, while there is more mobility and lesser stability with an o-amide group in that position instead. Our calculations show that the o-urea group leads to reduction in proton-transfer barriers, in line with experimental observation. We then applied electric-field-effect calculations to estimate the environmental effects on the two proton-transfer steps in the reaction. These calculations describe the perturbations that enhance the driving forces for the proton-transfer steps and have been used to make predictions about how the catalysts can be further engineered for more enhanced CO2 reduction processes.
Collapse
Affiliation(s)
- Chengxu Zhu
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department
of Chemical Engineering, The University
of Manchester, Oxford
Road, Manchester M13 9PL, United Kingdom
| | - Carmine D’Agostino
- Department
of Chemical Engineering, The University
of Manchester, Oxford
Road, Manchester M13 9PL, United Kingdom
- Dipartimento
di Ingegneria Civile, Chimica, Ambientale e dei Materiali, Alma Mater Studiorum−Università di Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Sam P. de Visser
- Manchester
Institute of Biotechnology, The University
of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department
of Chemical Engineering, The University
of Manchester, Oxford
Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
7
|
Li X, Liu Y. Multiscale Study on the Intramolecular C-S Bond Formation Catalyzed by P450 Monooxygenase CxnD Involved in the Biosynthesis of Chuangxinmycin: The Critical Roles of Noncrystal Water Molecule and Conformational Change. Inorg Chem 2024; 63:4086-4098. [PMID: 38376137 DOI: 10.1021/acs.inorgchem.3c03748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Cytochrome P450 monooxygenase CxnD catalyzes intramolecular C-S bond formation in the biosynthesis of chuangxinmycin, which is representative of the synthesis of sulfur-containing natural heterocyclic compounds. The intramolecular cyclization usually requires the activation of two reaction sites and a large conformational change; thus, illuminating its detailed reaction mechanism remains challengeable. Here, the reaction pathway of CxnD-catalyzed C-S bond formation was clarified by a series of calculations, including Gaussian accelerated molecular dynamics simulations and quantum mechanical-molecular mechanical calculations. Our results revealed that the C-S formation follows a diradical coupling mechanism. CxnD first employs Cpd I to abstract the hydrogen atom from the imino group of the indole ring, and then, the resulted Cpd II further extracts another hydrogen atom from the thiol group of the side chain to afford a diradical intermediate, in which a noncrystal water molecule entering into the active site after the formation of Cpd I was proved to play an indispensable role. Moreover, the diradical intermediate cannot directly perform the coupling reaction. It should first undergo a series of conformational changes leading to the proximity of two reaction sites. It is the flexibility of the active site of the enzyme and the side chain of the substrate that makes the diradical coupling to be successful.
Collapse
Affiliation(s)
- Xinyi Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
8
|
Wodtke R, Laube M, Hauser S, Meister S, Ludwig FA, Fischer S, Kopka K, Pietzsch J, Löser R. Preclinical evaluation of an 18F-labeled N ε-acryloyllysine piperazide for covalent targeting of transglutaminase 2. EJNMMI Radiopharm Chem 2024; 9:1. [PMID: 38165538 PMCID: PMC10761660 DOI: 10.1186/s41181-023-00231-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND Transglutaminase 2 (TGase 2) is a multifunctional protein and has a prominent role in various (patho)physiological processes. In particular, its transamidase activity, which is rather latent under physiological conditions, gains importance in malignant cells. Thus, there is a great need of theranostic probes for targeting tumor-associated TGase 2, and targeted covalent inhibitors appear to be particularly attractive as vector molecules. Such an inhibitor, equipped with a radionuclide suitable for noninvasive imaging, would be supportive for answering the general question on the possibility for functional characterization of tumor-associated TGase 2. For this purpose, the recently developed 18F-labeled Nε-acryloyllysine piperazide [18F]7b, which is a potent and selective irreversible inhibitor of TGase 2, was subject to a detailed radiopharmacological characterization herein. RESULTS An alternative radiosynthesis of [18F]7b is presented, which demands less than 300 µg of the respective trimethylammonio precursor per synthesis and provides [18F]7b in good radiochemical yields (17 ± 7%) and high (radio)chemical purities (≥ 99%). Ex vivo biodistribution studies in healthy mice at 5 and 60 min p.i. revealed no permanent enrichment of 18F-activity in tissues with the exception of the bone tissue. In vivo pretreatment with ketoconazole and in vitro murine liver microsome studies complemented by mass spectrometric analysis demonstrated that bone uptake originates from metabolically released [18F]fluoride. Further metabolic transformations of [18F]7b include mono-hydroxylation and glucuronidation. Based on blood sampling data and liver microsome experiments, pharmacokinetic parameters such as plasma and intrinsic clearance were derived, which substantiated the apparently rapid distribution of [18F]7b in and elimination from the organisms. A TGase 2-mediated uptake of [18F]7b in different tumor cell lines could not be proven. Moreover, evaluation of [18F]7b in melanoma tumor xenograft models based on A375-hS100A4 (TGase 2 +) and MeWo (TGase 2 -) cells by ex vivo biodistribution and PET imaging studies were not indicative for a specific targeting. CONCLUSION [18F]7b is a valuable radiometric tool to study TGase 2 in vitro under various conditions. However, its suitability for targeting tumor-associated TGase 2 is strongly limited due its unfavorable pharmacokinetic properties as demonstrated in rodents. Consequently, from a radiochemical perspective [18F]7b requires appropriate structural modifications to overcome these limitations.
Collapse
Affiliation(s)
- Robert Wodtke
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany.
| | - Markus Laube
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Sandra Hauser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Sebastian Meister
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
| | - Friedrich-Alexander Ludwig
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany
| | - Steffen Fischer
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany
| | - Klaus Kopka
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Permoserstraße 15, 04318, Leipzig, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Jens Pietzsch
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany
| | - Reik Löser
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Radiopharmaceutical Cancer Research, Bautzner Landstraße 400, 01328, Dresden, Germany.
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstraße 4, 01069, Dresden, Germany.
| |
Collapse
|