1
|
Bouda M, Hana GE, Xhili D, Sripada A, Bertke JA, Wolf C. Organocatalytic atroposelective fluorooxindole addition to coumarin Michael acceptors. Chem Commun (Camb) 2025. [PMID: 40314408 PMCID: PMC12047072 DOI: 10.1039/d5cc01166c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Organocatalytic atropisomeric synthesis with fluorinated oxindoles and 4-halo-3-nitrocoumarins gives congested structures displaying a Csp2-Csp3 chirality axis and an adjacent tetrasubstituted stereogenic carbon center with good yields, up to 97% ee and 41 : 1 dr. The scalable dehalogenative C-C bond formation is achieved under mild conditions with a commercially available urea catalyst.
Collapse
Affiliation(s)
- Maria Bouda
- Department of Chemistry, Georgetown University, Washington, D. C. 20057, USA.
| | - Grace E Hana
- Department of Chemistry, Georgetown University, Washington, D. C. 20057, USA.
| | - Dea Xhili
- Department of Chemistry, Georgetown University, Washington, D. C. 20057, USA.
| | - Archita Sripada
- Department of Chemistry, Georgetown University, Washington, D. C. 20057, USA.
| | - Jeffery A Bertke
- Department of Chemistry, Georgetown University, Washington, D. C. 20057, USA.
| | - Christian Wolf
- Department of Chemistry, Georgetown University, Washington, D. C. 20057, USA.
| |
Collapse
|
2
|
Yuan M, Xie W, Yu S, Liu T, Yang X. Catalytic enantioselective synthesis of inherently chiral calix[4]arenes via organocatalyzed aromatic amination enabled desymmetrization. Nat Commun 2025; 16:3943. [PMID: 40287403 PMCID: PMC12033305 DOI: 10.1038/s41467-025-59221-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
Inherently chiral calix[4]arenes represent a distinct class of chiral frameworks whose chirality arises from the dissymmetry of the entire molecule. Although these chiral scaffolds have been widely applied in various research fields, their catalytic enantioselective synthesis remains largely underexplored. Herein, we report the enantioselective synthesis of inherently chiral calix[4]arenes using an organocatalyzed desymmetrization method. By using chiral phosphoric acid catalysis, the asymmetric electrophilic amination reactions of the phenol-containing prochiral calix[4]arenes led to a range of inherently chiral calix[4]arenes with high yields and enantioselectivities. Significantly, the practicability of this method is underscored by its successful implementation using as little as 0.05 mol% of chiral catalyst, without compromising reaction efficiency and enantioselectivity. Moreover, the aminophenol moiety in the products could be easily modified to produce unique calix[4]arenes with diverse N,O-heterocycles, as well as the simple meta-amino-substituted chiral calix[4]arene, which have shown promising potential in the development of new chiral catalysts.
Collapse
Affiliation(s)
- Mengyao Yuan
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Lingang Laboratory, Shanghai, 200031, China
| | - Wansen Xie
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Shaoze Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Tong Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaoyu Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
3
|
Moon J, Shin E, Kwon Y. Enantioselective Desymmetrization of Biaryls via Cooperative Photoredox/Brønsted Acid Catalysis and Its Application to the Total Synthesis of Ancistrobrevolines. J Am Chem Soc 2025; 147:12800-12810. [PMID: 40186573 DOI: 10.1021/jacs.5c01480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
Photoredox catalysis has emerged as a powerful tool for forming and breaking chemical bonds, further taking hold with its integration with asymmetric catalysis. While the dual-catalytic approach has led to successful examples of the control of stereogenic centers, the control of stereogenic axes has remained underexplored. In this study, an acylimine intermediate was generated through photoredox catalysis, and a symmetric substrate, 2-arylresorcinol, was desymmetrized with the aid of chiral phosphoric acid catalysis. Using this approach, a stereogenic center and stereogenic axis were successfully controlled to provide a natural-product-driven compound. The origins of enantioselectivity and diastereoselectivity were investigated through a density functional theory study of four possible enantiodetermining transition states. Consequently, the first total syntheses of the ring-contracted naphthylisoquinoline alkaloid ancistrobrevolines A and B were accomplished concisely. This approach provides not only a novel methodology and strategy to synthesize naphthylisoquinoline alkaloids but also a direction to advance catalytic research and total synthesis studies.
Collapse
Affiliation(s)
- Junsoo Moon
- School of Pharmacy, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Eunjoo Shin
- School of Pharmacy, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Yongseok Kwon
- School of Pharmacy, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| |
Collapse
|
4
|
Guo B, Yan X, Wang Z, Shen C, Chen W, Cen S, Peng Q, Zhang Z. Enhanced Pyridine-Oxazoline Ligand-Enabled Pd(II)-Catalyzed Aminoacetoxylation of Alkenes for the Asymmetric Synthesis of Biaryl-Bridged 7-Membered N-Heterocycles and Atropisomers. J Am Chem Soc 2025; 147:12614-12626. [PMID: 40167529 DOI: 10.1021/jacs.5c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
A new class of binaphthyl unit-enhanced pyridine-oxazoline ligands was developed to promote the Pd-catalyzed enantioselective intramolecular 7-exo aminoacetoxylation of unactivated biaryl alkenes. Biaryl-bridged 7-membered N-heterocycles bearing a chiral center were obtained in good yields with excellent enantioselectivities (up to 99:1 er). Computational investigations on a series of biaryl-bridged 7-membered rings provided insights into the rotational barrier of the potentially chiral biaryl unit by the substituent effect including the heteroatom, the protecting group, and the chiral center. The kinetic resolution of racemic axially chiral biaryls via intramolecular enantioselective aminoacetoxylation of alkenes has also been achieved, affording previously inaccessible biaryl-bridged 7-membered N-heterocycles bearing both a chiral center and a chiral axis, as well as axially chiral biaryl amino alcohols.
Collapse
Affiliation(s)
- Beibei Guo
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Xiaoyang Yan
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zicong Wang
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chen Shen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Weifu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Shouyi Cen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| | - Qian Peng
- State Key Laboratory of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Zhipeng Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, China
| |
Collapse
|
5
|
Mothahalli Raju NK, Paul B, Tn L, Bodduna S, Kandukuri NK. Sulfur-Controlled Modulation of Peptoid Atropisomeric Foldamers. J Org Chem 2025; 90:4796-4807. [PMID: 40177955 DOI: 10.1021/acs.joc.4c02504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
We incorporated the hetero atoms (O/S) at the ortho-position to investigate the steric influence on controlling the rotational barrier around the C-N chiral axis and to elucidate the chiral attributes of sulfur-containing N-aryl peptoids. This study reports the simultaneous installation of a C-N chiral axis and the integration of sulfur-containing stereogenic elements in peptoid atropisomeric foldamers. By leveraging multiple chiral elements in peptoids, we demonstrated subtle structural variations, particularly by varying the sulfur oxidation states, that can lead to significant differences in the rotational energy barrier, as determined by dynamic HPLC. Additionally, we employed single-crystal X-ray crystallography to elucidate local conformational ordering and computational studies to identify noncovalent interactions in this class of atropisomers. Through these combined approaches, we explored sulfur-controlled modulation of N-aryl peptoid atropisomeric foldamers.
Collapse
Affiliation(s)
| | - Bishwajit Paul
- Department of Chemistry, Bangalore University, Jnana Bharathi Campus, Bangalore 560056, India
| | - Lohith Tn
- The National Institute of Engineering, Mysuru 570008 Karnataka, India
| | - Sandeep Bodduna
- YMC Application Lab, YMC India Pvt. Ltd., IDA Jeedimetla, Medchal-Malkajgiri, Telangana 500055, India
| | - Nagesh Kumar Kandukuri
- YMC Application Lab, YMC India Pvt. Ltd., IDA Jeedimetla, Medchal-Malkajgiri, Telangana 500055, India
| |
Collapse
|
6
|
Jin S, Wang Y, Yan JX, Xu T, Ning M, Yuan Q, Li G. P(═O)R 2-Directed Asymmetric Catalytic C-H Olefination Leading to C-N Axially Chiral Targets. Org Lett 2025; 27:2838-2844. [PMID: 40068107 DOI: 10.1021/acs.orglett.4c04862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
A novel P(═O)R2-directed asymmetric catalytic olefination has been developed, enabling efficient access to carbon-nitrogen axially chiral products with excellent yields (up to 92%) and enantioselectivity (up to 99% enantiomeric excess). The synergistic coordination of phosphine oxide functionality and l-pGlu-OH with the Pd metal center, serving as an efficient directing group and chiral ligand, was key to the success of this C-H functionalization system. The reaction demonstrated a broad substrate scope, yielding 33 distinct C-N axial products. The absolute configuration of the products was unambiguously confirmed via X-ray diffraction analysis. Additionally, three representative applications were showcased, involving reduction and oxidation to produce chiral phosphines and related derivatives. A plausible catalytic cycle mechanism has been proposed, supported by detailed experimental studies. Aggregates in the system were identified by aggregation-induced polarization experiments.
Collapse
Affiliation(s)
- Shengzhou Jin
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Yu Wang
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jasmine X Yan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Ting Xu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Min Ning
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Qingkai Yuan
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| | - Guigen Li
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409-1061, United States
| |
Collapse
|
7
|
Gu J, Zhang LH, Zhuang HF, He Y. Atroposelective [4+1] annulation for the synthesis of isotopic isoindolinones bearing both central and axial chirality. Chem Sci 2025; 16:5735-5744. [PMID: 40046081 PMCID: PMC11877746 DOI: 10.1039/d5sc00594a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/25/2025] [Indexed: 03/28/2025] Open
Abstract
Isotopically chiral molecules have drawn much attention due to their practical applications in drug discovery. However, existing studies in this area are mainly limited to centrally chiral molecules and H/D exchange. Herein, we report a chiral phosphoric acid-catalyzed atroposelective [4+1] annulation of ketoaldehydes and 1H-indol-1-amines. By means of this strategy, a series of D- and 18O-labeled atropisomers featuring both central and axial chiralities are synthesized with high enantioselectivities and diastereoselectivities and good to excellent isotopic incorporation. Experimental and density functional theory studies suggest that the reaction involves a sequential condensation, cyclization and isomerization cascade, in which the second step is the enantio-determining process.
Collapse
Affiliation(s)
- Jun Gu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Li-Hong Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Hong-Feng Zhuang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| | - Ying He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology Nanjing 210094 China
| |
Collapse
|
8
|
Zhai CY, Zhao B, Wang XL, Liu HY, Zhao B, Jiang Y. Lewis Acid-Enabled Chemodivergent Cycloadditions of Donor-Acceptor Cyclopropanes with Indoline-2-Thiones. J Org Chem 2025; 90:3209-3222. [PMID: 39977578 DOI: 10.1021/acs.joc.4c02791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2025]
Abstract
Lewis acid-enabled reactions of donor-acceptor cyclopropanes (DACs) with indoline-2-thiones are reported. The reaction exhibits tunable annulation depending on the Lewis acid and the substituent at N1 of the indoline-2-thiones. With AlCl3 as the Lewis acid and 1-isopropylindoline-2-thiones as reactants, a direct ring opening with DACs, followed by intramolecular nucleophilic addition/dehydration takes place leading to the formation of dihydro-2H-thiepino[2,3-b]indoles in moderate to good yields. Using Yb(OTf)3 as promoter and 1-unsubstituted indoline-2-thiones as reactants, a (3 + 2) cycloaddition with DACs accompanied by sulfur rearrangement nucleophilic addition/dehydration takes place to give 3-indolyl-4,5-dihydrothiophenes in moderate yields. In addition, the synthetic transformation of 3-indolyl-4,5-dihydrothiophene to sulfone and indole-based axially chiral scaffolds further extends the synthetic utility and structural complexity.
Collapse
Affiliation(s)
- Chen-Ying Zhai
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Bing Zhao
- Key Laboratory of Technology of Drug Preparation (Zhengzhou University), Ministry of Education of China; Key Laboratory of Henan Province for Drug Quality and Evaluation; Institute of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xue-Long Wang
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Huai-Yan Liu
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Bo Zhao
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Yan Jiang
- Key Laboratory of Green Chemistry of Sichuan Institutes of Higher Education, College of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Zigong 643000, China
| |
Collapse
|
9
|
de Ceuninck van Capelle LA, Wales SM, Macdonald JM, Kruger M, Richardson C, Gardiner MG, Hyland CJT. Synthesis and Reactivity of Atropo-Diastereomeric Benzoazepine-Fused Isoindoles. J Org Chem 2025; 90:3101-3109. [PMID: 39969184 DOI: 10.1021/acs.joc.4c03064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
The stereoselective oxidation of benzoazepine-fused isoindolines to benzoazepine-fused isoindole atropodiastereomers is investigated, revealing a central-to-axial chirality conversion. By leveraging the characteristic folded conformation of these C-N atropisomers, Diels-Alder cycloaddition of the isoindole is achieved with complete facial selectivity, generating sp3-rich structures as single isomers.
Collapse
Affiliation(s)
- Lillian A de Ceuninck van Capelle
- Molecular Horizons Research Institute, School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Steven M Wales
- Molecular Horizons Research Institute, School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - James M Macdonald
- CSIRO Manufacturing, Biomedical Manufacturing Program, Research Way, Clayton, VIC 3168, Australia
| | - Megan Kruger
- CSIRO Manufacturing, Materials Characterisation and Modelling Program, Research Way, Clayton, VIC 3168, Australia
| | - Christopher Richardson
- Molecular Horizons Research Institute, School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| | - Michael G Gardiner
- Research School of Chemistry, Australian National University, Acton, ACT 2601, Australia
| | - Christopher J T Hyland
- Molecular Horizons Research Institute, School of Chemistry and Molecular Bioscience, University of Wollongong, Northfields Ave, Wollongong, NSW 2522, Australia
| |
Collapse
|
10
|
Wootton JM, Roper NJ, Morris CE, Maguire VE, Duff LC, Waddell PG, Whitwood AC, Gammons RJ, Miah AH, Lynam JM, Armstrong RJ, Unsworth WP. Stereoselective synthesis of atropisomeric amides enabled by intramolecular acyl transfer. Chem Sci 2025; 16:3938-3945. [PMID: 39886439 PMCID: PMC11776508 DOI: 10.1039/d4sc05760k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/19/2025] [Indexed: 02/01/2025] Open
Abstract
C-N atropisomeric amides are important compounds in medicinal chemistry and agrochemistry. Atropselective methods for their synthesis are therefore important. In this study, a novel strategy to make C-N atropisomeric amides based on intramolecular acyl transfer via a tethered Lewis basic pyridine or tertiary amine group is reported. The reactions operate under kinetic control and in most cases are highly atropselective, with the products isolable as pure, single diastereoisomers following chromatography. The kinetically favored atropisomer can also be isomerised into the alternative thermodynamically favored atropisomer upon heating. The kinetic and thermodynamic outcomes are supported by computational studies, while additional mechanistic studies support operation via initial fast acylation of the Lewis basic group, followed by rate-determining acyl transfer, which also enables control over the atropisomer formed.
Collapse
Affiliation(s)
- Jack M Wootton
- Department of Chemistry, University of York York YO10 5DD UK
| | - Natalie J Roper
- School of Natural and Environmental Sciences, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| | - Catrin E Morris
- Department of Chemistry, University of York York YO10 5DD UK
| | | | - Lee C Duff
- Department of Chemistry, University of York York YO10 5DD UK
| | - Paul G Waddell
- School of Natural and Environmental Sciences, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| | | | | | | | - Jason M Lynam
- Department of Chemistry, University of York York YO10 5DD UK
| | - Roly J Armstrong
- School of Natural and Environmental Sciences, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| | | |
Collapse
|
11
|
Li X, Wang XZ, Shen B, Chen QY, Xiang H, Yu P, Liu PN. Organocatalyzed diastereo- and enantioselective synthesis of N-N atropisomeric isoindolinones bearing central chirality. Nat Commun 2025; 16:1662. [PMID: 39955272 PMCID: PMC11830031 DOI: 10.1038/s41467-025-56838-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 02/03/2025] [Indexed: 02/17/2025] Open
Abstract
Methods for catalytically constructing of N-N axially chiral scaffolds have garnered significant attention since such compounds are widely present in natural products, bioactive molecules, and organic materials. Herein, we report a highly diastereoselective and enantioselective organocatalyzed [4 + 1] annulation method for synthesizing diverse valuable isoindolinones that possessing N-N axial and central chiralities. This methodology uses a chiral phosphoric acid as a bifunctional catalyst to promote a cascade sequence involving two nucleophilic additions, dehydration, and dearomatization processes. Control experiments and DFT calculations revealed a possible mechanism in which the stereoselectivity-determining step is likely to involve the irreversible formation of a hydroxy biaryl intermediate. Additionally, preliminary biological activity studies showed that some of these N-N axially chiral isoindolinones have potential in suppressing tumor-cell proliferation.
Collapse
Affiliation(s)
- Xingguang Li
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Xin-Ze Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Boming Shen
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qian-Yu Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Huijing Xiang
- School of Life Sciences, Shanghai University, Shanghai, 200444, China
| | - Peiyuan Yu
- Department of Chemistry and Shenzhen Grubbs Institute, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Pei-Nian Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- State Key Laboratory of Natural Medicines, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
12
|
Fang W, Meng YD, Ding SY, Wang JY, Pei ZH, Shen ML, Yao CZ, Li Q, Gu Z, Yu J, Jiang HJ. Asymmetric S-Arylation of Sulfenamides to Access Axially Chiral Sulfilimines Enabled by Anionic Stereogenic-at-Cobalt(III) Complexes. Angew Chem Int Ed Engl 2025; 64:e202419596. [PMID: 39625341 DOI: 10.1002/anie.202419596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
An efficient enantioselective coupling reaction between sulfenamides and cyclic diaryliodonium salts is established via adaptive Cu/anionic stereogenic-at-Co(III) complex combined catalysis, precisely synthesizing a broad range of axially chiral sulfilimines with excellent enantioselectivities, diastereoselectivities, regioselectivities, and chemoselectivities (67 examples under same conditions, up to 98 % ee). The following thermodynamically controlled pyramidal inversion enables efficient stereodivegent synthesis of all four stereoisomers. Mechanistic studies suggest that anionic stereogenic-at-cobalt(III) complexes serve as counteranions of diaryliodonium and anionic ligand of Cu(I) catalyst simultaneously, which could be regarded as an explanation for outstanding selectivities.
Collapse
Affiliation(s)
- Wei Fang
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| | - Yan-Dong Meng
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| | - Shu-Ying Ding
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| | - Ju-Yan Wang
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| | - Zheng-Hao Pei
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| | - Meng-Lan Shen
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| | - Chuan-Zhi Yao
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| | - Qiankun Li
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| | - Zhenhua Gu
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu, 210093, China
| | - Jie Yu
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| | - Hua-Jie Jiang
- Department of Applied Chemistry, Anhui Province Engineering Laboratory for Green Pesticide Development and Application, and Anhui Province Key Laboratory of Crop Integrated Pest Management, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
13
|
Feng K, Yao C, Xu H. Biaxially chiral compounds: research and development of synthesis. Chem Commun (Camb) 2025; 61:2217-2234. [PMID: 39775290 DOI: 10.1039/d4cc04701j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
With the rapid advancements in asymmetric catalysis, there is a growing need for the asymmetric selective synthesis of complex and diverse molecules with chiral axes. Axially chiral molecules are not only present in natural products and drugs but also in specialized chiral ligands and catalysts. The catalytic asymmetric synthesis of axially chiral molecules has garnered significant attention within the chemical community. To date, two asymmetric catalytic methods have been established for the synthesis of biaxially chiral molecules: transition-metal catalysis and asymmetric organocatalysis. This feature article presents a summary of the research progress made in the field of asymmetric selective synthesis of biaxially chiral molecules. This review focuses on the reaction range, limitations, and reaction mechanism of the biaxially chiral molecular synthesis method, as well as the contribution and advantages of this method in the preparation of various axially chiral compounds.
Collapse
Affiliation(s)
- Kongling Feng
- College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, China.
| | - Chaochao Yao
- College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, China.
| | - Hao Xu
- College of Chemistry, Central China Normal University, Wuhan 430079, Hubei, China.
| |
Collapse
|
14
|
Ibragimova R, Lu QL, Wang MX, Zhu J, Tong S. Asymmetric Synthesis of Inherently Chiral Tetraoxacalix[2]arene[2]pyridines via S NAr-Based Cross-Cyclotetramerization. Chem Asian J 2025:e202401621. [PMID: 39888237 DOI: 10.1002/asia.202401621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/14/2025] [Accepted: 01/28/2025] [Indexed: 02/01/2025]
Abstract
Potassium phosphate-promoted cross-cyclotetramerization of 2,6-dichloro-3-nitropyridine 1 with resorcinol derivatives 2 gave rise to thermodynamically favored 1,3-alternate tetraoxacalix[2]arene[2]pyridines and kinetically controlled 1,2-alternate isomers. The kinetic product could convert into its 1,3-alternate conformational isomer by a macrocycle to macrocycle conversion pathway. Enantiomerically enriched C2-symmetric inherently chiral tetraoxacalix[2]arene[2]pyridines were synthesized via a Cinchonine-derived chiral phase-transfer catalyst (PTC). This synthesis involved the cross-cyclotetramerization of 1 with 2, featuring a key enantioselective intramolecular aromatic nucleophilic substitution (SNAr) step.
Collapse
Affiliation(s)
- Regina Ibragimova
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qiu-Lin Lu
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Mei-Xiang Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products (LSPN), Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015, Lausanne, Switzerland
| | - Shuo Tong
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
15
|
Zhang P, Yuan B, Li J, Li C, Guo J, Zhang B, Qu G, Su H, Turner NJ, Sun Z. Biocatalytic Desymmetrization for the Atroposelective Synthesis of Axially Chiral Biaryls Using an Engineered Imine Reductase. Angew Chem Int Ed Engl 2025; 64:e202416569. [PMID: 39271458 DOI: 10.1002/anie.202416569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/13/2024] [Accepted: 09/13/2024] [Indexed: 09/15/2024]
Abstract
The enzymatic atroposelective synthesis of biaryl compounds is relatively rare, despite considerable attention received by biocatalysis in the academic and industrial sectors. Imine reductases (IREDs) are an important class of enzymes that have been applied in the asymmetric synthesis of chiral amine building blocks. In this study, two IREDs (IR140 and IR189) were identified to catalyze the efficient desymmetrization of biaryls utilizing various amine donors. Further protein engineering enabled the identification of variants (IR189 M8-M9 and IR189 M13-M14) that are able to catalyze the formation of both (R) and (S) atropisomers in excellent yields and atroposelectivities (24 examples, up to 99 % ee and yield). The absolute configuration and rotational barriers were confirmed, and the reactions were readily scaled up to allow isolation of the atropisomeric product in 99 % ee and 82 % yield. The optically pure biaryl amines were further derivatized into various synthetically useful atropisomers. To shed light on the molecular recognition mechanisms, molecular dynamics (MD) simulations were performed, offering plausible explanations for the improved atroposelectivity and enzymatic activity. The current strategy expands the scope of the IRED-catalyzed synthesis of axially chiral biaryl amines, contributing significantly to the field of atroposelective biocatalysis.
Collapse
Affiliation(s)
- Pengpeng Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, P. R. China
| | - Bo Yuan
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, P. R. China
| | - Junkuan Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, P. R. China
| | - Congcong Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, P. R. China
| | - Jiaxin Guo
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China
| | - Bowen Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China
| | - Ge Qu
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, P. R. China
| | - Hao Su
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, P. R. China
| | - Nicholas J Turner
- Department of Chemistry, Manchester Institute of Biotechnology, University of Manchester, Manchester, M1 7DN, U. K
| | - Zhoutong Sun
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, P. R. China
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin, 300308, P. R. China
| |
Collapse
|
16
|
Biswas S, Kundu S, Chandra Pan S. Organocatalytic Asymmetric Synthesis of C-N Atropisomers with Pyrrole, Oxindole and Succinimide Scaffold. Chem Asian J 2025; 20:e202401132. [PMID: 39523707 DOI: 10.1002/asia.202401132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
An asymmetric synthesis of C-N atropisomers with pyrrole, oxindole and succinimide moities was developed via organocatalytic desymmetric Michael addition of 3-pyrrolyloxindole with prochiral N-aryl maleimides. The C-N atropisomers were obtained in acceptable yields with high diastero- and enantioselectivities (>20 : 1 dr, up to >99 % ee). C-N Rotational energy barrier has also been determined.
Collapse
Affiliation(s)
- Subhankar Biswas
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Subham Kundu
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Subhas Chandra Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| |
Collapse
|
17
|
Wang Y, Wang D, Wang S, Chong Q, Zhang Z, Meng F. Cobalt-Catalyzed Regio-, Diastereo- and Enantioselective Reductive Coupling of 1,3-Dienes and Aldehydes. Angew Chem Int Ed Engl 2025; 64:e202413313. [PMID: 39230052 DOI: 10.1002/anie.202413313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/04/2024] [Indexed: 09/05/2024]
Abstract
Catalytic regio-, diastereo- and enantioselective reductive coupling of 1,3-dienes and aldehydes through regio- and enantioselective oxidative cyclization followed by regio- and diastereoselective protonation promoted by a chiral phosphine-cobalt complex is presented. Such processes represent an unprecedented reaction pathway for cobalt catalysis that enable selective transformation of the more substituted alkene in 1,3-dienes, affording a broad scope of bishomoallylic alcohols without the need of pre-formation of stoichiometric amounts of sensitive organometallic reagents in up to 98 % yield, >98 : 2 regioselectivity, >98 : 2 dr and 98 : 2 er. Application of this method to construction of axial stereogenicity and deuterated stereogenic center provided a wide range of multifunctional chiral building blocks that are otherwise difficult to access. DFT calculations revealed the origin of regio- and stereoselectivity as well as a unique oxidative cyclization mechanism for cobalt catalysis.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China
| | - Danrui Wang
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| | - Shilin Wang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China
| | - Qinglei Chong
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China
| | - Zhihan Zhang
- College of Chemistry, Central China Normal University, 152 Louyu Road, Wuhan, Hubei, 430079, China
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 100871, China
| |
Collapse
|
18
|
Zhao SN, Li Q, Qiao XX, He Y, Li G, Zhao XJ. Asymmetric Synthesis of Axially Chiral N, N-1,2-Pentatomic Heterobiaryl Diamines by an Organocatalytic Arylation Reaction. Chemistry 2024; 30:e202402843. [PMID: 39304988 DOI: 10.1002/chem.202402843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Indexed: 11/09/2024]
Abstract
The utilization of axially chiral biaryl diamines has been widely acknowledged as highly advantageous structures for the advancement of chiral catalysts and ligands. This highlights their extensive range of applications in asymmetric catalysis and synthesis. Herein, we devised a direct arylation reactions of 5-aminopyrazoles with azonaphthalenes, utilizing chiral phosphoric acid as the catalyst. This method delivers structurally novel atroposelective N, N-1,2-azole heteroaryl diamines with high yields (up to >98 %) and good to excellent enantiomeric ratios while exhibiting a wide range of substrate compatibility.
Collapse
Affiliation(s)
- Shi-Na Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Qian Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Xiu-Xiu Qiao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Ganpeng Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| | - Xiao-Jing Zhao
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650500, China
| |
Collapse
|
19
|
Domain A, Bao X, Rodriguez J, Bonne D. Enantioselective Synthesis of Benzodihydrofurans Bearing Axial and Central Stereogenic Elements. Chemistry 2024; 30:e202403374. [PMID: 39329420 DOI: 10.1002/chem.202403374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 09/28/2024]
Abstract
The enantioselective synthesis of chiral compounds containing multiple stereogenic elements via a single catalytic step is a challenging process. In the presence of α-chloronitrostyrenes and a chiral squaramide catalyst, C-C or C-N pro-axially chiral 2-naphthol substrates, featuring low barriers to enantiomerization, underwent a remote diastereo- and enantioselective domino Michael/O-alkylation. It provided the desired benzodihydrofurans bearing two stereogenic carbon atoms and a configurationally stable C-C or a C-N bond, thanks to a high increase of the barrier to rotation upon dihydrofurannulation.
Collapse
Affiliation(s)
- Antoine Domain
- Aix Marseille Univ, CNRS, Centrale Med, iSm2, Marseille, France
| | - Xiaoze Bao
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jean Rodriguez
- Aix Marseille Univ, CNRS, Centrale Med, iSm2, Marseille, France
| | - Damien Bonne
- Aix Marseille Univ, CNRS, Centrale Med, iSm2, Marseille, France
| |
Collapse
|
20
|
Han TJ, Yang QL, Hu J, Wang MC, Mei GJ. Divergent Synthesis of Chiroptical Molecular Switches Based on 1,2-Diaxial Atropisomers. JACS AU 2024; 4:4445-4454. [PMID: 39610732 PMCID: PMC11600187 DOI: 10.1021/jacsau.4c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 11/30/2024]
Abstract
The development of chiroptical molecular switches for chiral sensing, data communication, optical displays, chiral logic gates, and asymmetric catalysis is currently a vibrant frontier of science and technology. Herein, we report a practical artificial dynamic system based on a 1,2-diaxial atropisomer. Organocatalytic parallel kinetic resolution allows the divergent synthesis of two sets of stereoisomers with vicinal C-C and N-N axes from the same racemic single-axis substrates. By simply varying the configuration of the single catalyst, all four stereoisomers are accessible. The successive conduction of covalent unlocking/locking and thermal-isomerization processes enables sequential switching between all four atropisomeric states with electronic circular dichroism signal reversal, providing an example of multistate chiroptical molecular switches.
Collapse
Affiliation(s)
- Tian-Jiao Han
- College
of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Qiu-Le Yang
- College
of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jiaen Hu
- College
of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Min-Can Wang
- College
of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Guang-Jian Mei
- College
of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Pingyuan
Laboratory (Zhengzhou University), Zhengzhou 450001, China
| |
Collapse
|
21
|
Wang H, Peng XQ, Yang Y, Geng ZX, Sun BL, Zhou L, Chen J. Construction of Axially Chiral 4-Aminoquinolines by Cycloaddition and Central-to-Axial Chirality Conversion. Org Lett 2024. [PMID: 39540238 DOI: 10.1021/acs.orglett.4c03827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A two-step strategy has been established for the enantioselective synthesis of 4-aminoquinolines possessing axial chirality. This approach involves a chiral phosphoric acid-catalyzed cycloaddition, followed by a DDQ oxidation step. The method offers efficient access to a variety of 1,1'-biaryl-2,2'-amino alcohol derivatives in excellent yields and enantioselectivities (up to 98% yield and 93% ee). Furthermore, the synthetic transformation of the products was also investigated.
Collapse
Affiliation(s)
- Hui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Xian-Qing Peng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Yang Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Ze-Xiang Geng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Bo-Lin Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Ling Zhou
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jie Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, Department of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
22
|
Gaucherand A, Yen-Pon E, Domain A, Bourhis A, Rodriguez J, Bonne D. Enantioselective synthesis of molecules with multiple stereogenic elements. Chem Soc Rev 2024; 53:11165-11206. [PMID: 39344998 DOI: 10.1039/d3cs00238a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
This review explores the fascinating world of molecules featuring multiple stereogenic elements, unraveling the different strategies designed over the years for their enantioselective synthesis. Specifically, (dynamic) kinetic resolutions, desymmetrisations and simultaneous installation of stereogenic elements exploiting either metal- or organo-catalysis are the principal approaches to efficiently create and control the three-dimensional shapes of these attractive molecules. Although most molecules presented in this review possess a stereogenic carbon atom in combination with a stereogenic axis, other combinations with helices or planes of chirality have started to emerge, as well as molecules displaying more than two different stereogenic elements.
Collapse
Affiliation(s)
| | | | - Antoine Domain
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| | - Alix Bourhis
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| | - Jean Rodriguez
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| | - Damien Bonne
- Aix Marseille Univ, CNRS, Centrale Med, Marseille, ISM2, France
| |
Collapse
|
23
|
Liu Y, Chu M, Li X, Cao Z, Zhao X, Yin Y, Jiang Z. Photoredox Catalytic Deracemization Enabled Enantioselective and Modular Access to Axially Chiral N-Arylquinazolinones. Angew Chem Int Ed Engl 2024; 63:e202411236. [PMID: 39045910 DOI: 10.1002/anie.202411236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/25/2024]
Abstract
Visible light-driven photocatalytic deracemization is highly esteemed as an ideal tool for organic synthesis due to its exceptional atom economy and synthetic efficiency. Consequently, successful instances of deracemization of allenes have been established, where the activated energy of photosensitizer should surpass that of the substrates, representing an intrinsic requirement. Accordingly, this method is not applicable for axially chiral molecules with significantly high triplet energies. In this study, we present a photoredox catalytic deracemization approach that enables the efficient synthesis of valuable yet challenging-to-access axially chiral 2-azaarene-functionalized quinazolinones. The substrate scope is extensive, allowing for both 3-axis and unmet 1-axis assembly through facile oxidation of diverse central chiral 2,3-dihydroquinazolin-4(1H)-ones that can be easily prepared and achieve enantiomer enrichment via deracemization. Mechanistic studies reveal the importance of photosensitizer selection in attaining excellent chemoselectivity and highlight the indispensability of a chiral Brønsted acid in enabling highly enantioselective protonation to accomplish efficient deracemization.
Collapse
Affiliation(s)
- Yilin Liu
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China, 453007
| | - Mengqi Chu
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China, 453007
| | - Xiangtao Li
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China, 453007
| | - Zheng Cao
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China, 453007
| | - Xiaowei Zhao
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, P. R. China, 475004
| | - Yanli Yin
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China, 453007
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, Henan, P. R., China, 451001
| | - Zhiyong Jiang
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, P. R. China, 453007
- Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan, P. R. China, 475004
| |
Collapse
|
24
|
Wu P, Zhang WT, Yang JX, Yu XY, Ni SF, Tan W, Shi F. Synthesis of Alkene Atropisomers with Multiple Stereogenic Elements via Catalytic Asymmetric Rearrangement of 3-Indolylmethanols. Angew Chem Int Ed Engl 2024; 63:e202410581. [PMID: 39039588 DOI: 10.1002/anie.202410581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Catalytic enantioselective preparation of alkene atropisomers with multiple stereogenic elements and discovery of their applications have become significant but challenging issues in the scientific community due to the unique structures of this class of atropisomers. We herein report the first catalytic atroposelective preparation of cyclopentenyl[b]indoles, a new kind of alkene atropisomers, with stereogenic point and axial chirality via an unusual rearrangement reaction of 3-indolylmethanols under asymmetric organocatalysis. Notably, this novel type of alkene atropisomers have promising applications in developing chiral ligands or organocatalysts, discovering antitumor drug candidates and fluorescence imaging materials. Moreover, the theoretical calculations have elucidated the possible reaction mechanism and the non-covalent interactions to control the enantioselectivity. This approach offers a new synthetic strategy for alkene atropisomers with multiple stereogenic elements, and represents the first catalytic enantioselective rearrangement reaction of 3-indolylmethanols, which will advance the chemistry of atropisomers and chiral indole chemistry.
Collapse
Affiliation(s)
- Ping Wu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Wen-Tao Zhang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Ji-Xiang Yang
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Xian-Yang Yu
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Shao-Fei Ni
- Department of Chemistry, Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, 515063, China
| | - Wei Tan
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
| | - Feng Shi
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
- School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China
| |
Collapse
|
25
|
Valdés H, Alpuente N, Salvador P, Hashmi ASK, Ribas X. CCC-NHC Au(iii) pincer complexes as a reliable platform for isolating elusive species. Chem Sci 2024:d4sc02999b. [PMID: 39386905 PMCID: PMC11459386 DOI: 10.1039/d4sc02999b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024] Open
Abstract
The reactivity of unprecedented CCC-NHC Au(iii) pincer complexes has been investigated, employing a novel methodology for their preparation. Notably, this marks the inaugural case of CCC-NHC Au(iii) pincer complexes with a central aryl moiety where the two arms of the pincer ligand consist of N-heterocyclic carbenes (NHC). The stability conferred by the CCC-NHC ligand facilitated the isolation of elusive Au(iii) species, encompassing Au(iii)-formate, Au(iii)-F, Au(iii)-Me, and Au(iii)-alkynyl. Our study also unveiled the elusive Au(iii)-H species, offering valuable insights into its formation, stability, and reactivity. While the CCC-NHC Au(iii)-H complex remains stable at room temperature, its decomposition becomes conspicuous at elevated temperatures (>60 °C), exhibiting a more pronounced tendency under acidic conditions compared to basic ones. Through comprehensive experiments, we indirectly demonstrated the potential of Au(iii)-formate to undergo β-hydride elimination, becoming a key step in the dehydrogenation of formic acid. Theoretical calculations revealed variations in the reactivity of Au(iii)-H species towards sodium hydride and formic acid, highlighting a link between σ-donation from the pincer ligand and reaction energetics. Pincers with lower electron donation favored the reaction with sodium hydride but impeded the reaction with formic acid, whereas those with higher electron donation exhibited the opposite behavior. Additionally, the CCC-NHC Au(iii) pincer complex exhibited Lewis acid behavior, catalyzing the synthesis of phenols. In summary, the CCC-NHC Au(iii) pincer complex emerges as a versatile platform for isolating reactive species and unraveling elementary catalytic steps.
Collapse
Affiliation(s)
- Hugo Valdés
- Departamento de Química Orgánica y Química Inorgánica, Instituto de Investigación Química "Andrés M. del Río" (IQAR), Facultad de Farmacia, Universidad de Alcalá Alcalá de Henares 28805 Madrid Spain
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi Girona E-17003 Catalonia Spain
| | - Nora Alpuente
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi Girona E-17003 Catalonia Spain
| | - Pedro Salvador
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi Girona E-17003 Catalonia Spain
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut, Heidelberg University 69120 Heidelberg Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University (KAU) Jeddah 21589 Saudi Arabia
| | - Xavi Ribas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi Girona E-17003 Catalonia Spain
| |
Collapse
|
26
|
Roper NJ, Campbell ADG, Waddell PG, Brown AK, Ermanis K, Armstrong RJ. A stereodivergent multicomponent approach for the synthesis of C-N atropisomeric peptide analogues. Chem Sci 2024:d4sc04700a. [PMID: 39323517 PMCID: PMC11418089 DOI: 10.1039/d4sc04700a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024] Open
Abstract
A four-component Ugi reaction is described for the stereoselective synthesis of novel C-N atropisomeric peptide analogues. Using this approach, a combination of simple, readily available starting materials (ortho-substituted anilines, aldehydes, carboxylic acids and isocyanides) could be combined to access complex products possessing both central and axial chirality in up to 92% yield and >95 : 5 d.r. Variation of the reaction temperature enabled the development of stereodivergent reactions capable of selectively targeting either diastereoisomer of a desired product from a single set of starting materials with high levels of stereocontrol. Detailed experimental and computational studies have been performed to probe the reaction mechanism and stereochemical outcome of these reactions. Preliminary studies show that novel atropisomeric scaffolds prepared using this method display inhibitory activity against M. tuberculosis with a significant difference in activity observed between different atropisomers.
Collapse
Affiliation(s)
- Natalie J Roper
- School of Natural and Environmental Sciences, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| | - Aaron D G Campbell
- School of Natural and Environmental Sciences, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| | - Paul G Waddell
- School of Natural and Environmental Sciences, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| | - Alistair K Brown
- Biosciences Institute, Faculty of Medical Sciences, Newcastle University Newcastle Upon Tyne NE2 4HH UK
| | - Kristaps Ermanis
- School of Chemistry, University of Nottingham, University Park Nottingham NG7 2RD UK
| | - Roly J Armstrong
- School of Natural and Environmental Sciences, Newcastle University Newcastle Upon Tyne NE1 7RU UK
| |
Collapse
|
27
|
Fragkiadakis M, Thomaidi M, Stergiannakos T, Chatziorfanou E, Gaidatzi M, Michailidis Barakat A, Stoumpos C, Neochoritis CG. High Rotational Barrier Atropisomers. Chemistry 2024; 30:e202401461. [PMID: 38962895 DOI: 10.1002/chem.202401461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 07/05/2024]
Abstract
Atropisomers have attracted a great deal of attention lately due to their numerous applications in organic synthesis and to their employment in drug discovery. However, the synthetic arsenal at our disposal with which to access them remains limited. The research described herein is two-pronged; we both demonstrate the use of MCR chemistry as a synthetic strategy for the de novo synthesis of a class of atropisomers having high barriers to rotation with the simultaneous insertion of multiple chiral elements and we study these unprecedented molecular systems by employing a combination of crystallography, NMR and DFT calculations. By fully exploiting the synthetic capabilities of our chemistry, we have been able to monitor a range of different types of interaction, i. e. π-π, CH-π, heteroatom-π and CD-π, in order to conduct structure-property studies. The results could be applied both to atroposelective synthesis and in drug discovery.
Collapse
Affiliation(s)
| | - Maria Thomaidi
- Department of Chemistry, University of Crete, Voutes, Heraklion, 70013, Greece
| | | | | | - Maria Gaidatzi
- Department of Chemistry, University of Crete, Voutes, Heraklion, 70013, Greece
| | | | - Constantinos Stoumpos
- Department of Materials Science & Technology, University of Crete, Voutes, Heraklion, 70013, Greece
| | | |
Collapse
|
28
|
Zhu XQ, Yang HY, Ye LW. Chiral Brønsted Acid-Catalyzed Asymmetric Reaction via Vinylidene Ortho-Quinone Methides. Chemistry 2024; 30:e202402247. [PMID: 38923595 DOI: 10.1002/chem.202402247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Vinylidene ortho-quinone methides (VQMs) have been proven to be versatile and crucial intermediates in the catalytic asymmetric reaction in last decade, and thus have drawn considerable concentrations on account of the practical application in the construction of enantiomerically pure functional organic molecules. However, in comparison to the well established chiral Brønsted base-catalyzed asymmetric reaction via VQMs, chiral Brønsted acid-catalyzed reaction is rarely studied and there is no systematic summary to date. In this review, we summarize the recent advances in the chiral Brønsted acid-catalyzed asymmetric reaction via VQMs according to three types of reactions: a) intermolecular asymmetric nucleophilic addition to VQMs; b) intermolecular asymmetric cycloaddition of VQMs; c) intramolecular asymmetric cyclization of VQMs. Finally, we put forward the remained challenges and opportunities for potential breakthroughs in this area.
Collapse
Affiliation(s)
- Xin-Qi Zhu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
| | - Hai-Yu Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
| | - Long-Wu Ye
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, China
- Key Laboratory for Chemical Biology of Fujian Province and State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, Xiamen University, Xiamen, 361005, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| |
Collapse
|
29
|
Su L, Gao S, Liu J. Enantioconvergent synthesis of axially chiral amides enabled by Pd-catalyzed dynamic kinetic asymmetric aminocarbonylation. Nat Commun 2024; 15:7248. [PMID: 39179590 PMCID: PMC11344157 DOI: 10.1038/s41467-024-51717-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
Atropisomeric biaryls bearing carbonyl groups have attracted increasing attention due to their prevalence in diverse bioactive molecules and crucial role as efficient organo-catalysts or ligands in asymmetric transformations. However, their preparation often involves tedious multiple steps, and the direct synthesis via asymmetric carbonylation has scarcely been investigated. Herein, we report an efficient palladium-catalyzed enantioconvergent aminocarbonylation of racemic heterobiaryl triflates with amines via dynamic kinetic asymmetric transformation (DyKAT). This protocol features a broad substrate scope and excellent compatibility for rapid construction of axially chiral amides in good to high yields with excellent enantioselectivities. Detailed mechanistic investigations discover that the base can impede the intramolecular hydrogen bond-assisted axis rotation of the products, thus allowing for the success to achieve high enantioselectivity. Moreover, the achieved axially chiral heterobiaryl amides can be directly utilized as N,N,N-pincer ligands in copper-catalyzed enantioselective formation of C(sp3)-N and C(sp3)-P bonds.
Collapse
Affiliation(s)
- Lei Su
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Shen Gao
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawang Liu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
30
|
Li F, Luo Y, Ren J, Yuan Q, Yan D, Zhang W. Iridium-Catalyzed Asymmetric Hydroarylation of Unactivated Alkenes with Heterobiaryls: Simultaneous Construction of Axial and Central Chirality. Org Lett 2024; 26:6835-6840. [PMID: 39110942 DOI: 10.1021/acs.orglett.4c02282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
There are only a few examples being reported for the simultaneous control of central chirality and axial chirality because it is more challenging. Herein, we report an iridium-catalyzed asymmetric hydroarylation of unactivated alkenes with heterobiaryls to simultaneously construct axial and central chirality. The reaction showed a broad substrate scope and delivered the products with satisfactory results. The results of the control experiments demonstrated that the FerroLANE ligand promotes the reaction to proceed along a specific modified Chalk-Harrod mechanism.
Collapse
Affiliation(s)
- Fei Li
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Yicong Luo
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Jinbao Ren
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Qianjia Yuan
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Deyue Yan
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| | - Wanbin Zhang
- Shanghai Key Laboratory of Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, P. R. China
| |
Collapse
|
31
|
Zhang Z, Dai L. Construction of axially chiral molecules enabled by photoinduced enantioselective reactions. Chem Sci 2024; 15:12636-12643. [PMID: 39148771 PMCID: PMC11323314 DOI: 10.1039/d4sc03766a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/22/2024] [Indexed: 08/17/2024] Open
Abstract
Axially chiral molecular scaffolds are widely found in pharmaceutical molecules, functionalized materials, and chiral ligands. The synthesis of these compounds has garnered considerable interest from both academia and industry. The construction of such molecules, enabled by transition metal catalysis and organocatalysis under thermodynamic conditions, has been extensively studied and well-reviewed. In recent years, photoinduced enantioselective reactions have emerged as powerful methods for the catalytic construction of axial chirality. In this review, we provide an overview of various synthetic strategies for the photoinduced construction of axial chirality, with a specific focus on reaction design and catalytic mechanisms. Additionally, we discuss the limitations of current methods and highlight future directions in this field.
Collapse
Affiliation(s)
- Zhaofei Zhang
- Department of Chemistry, Purdue University West Lafayette Indiana 47907 USA
| | - Lei Dai
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University Chongqing 401331 China
| |
Collapse
|
32
|
Lin C, Zhang J, Sun Z, Guo Y, Chong Q, Zhang Z, Meng F. Cobalt-Catalyzed Enantioselective Alkenylation of Aldehydes. Angew Chem Int Ed Engl 2024; 63:e202405290. [PMID: 38818654 DOI: 10.1002/anie.202405290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/26/2024] [Accepted: 05/30/2024] [Indexed: 06/01/2024]
Abstract
Catalytic enantioselective alkenylation of aldehydes with easily accessible alkenyl halides promoted by a chiral cobalt complex derived from a newly developed tridentate bisoxazolinephosphine is presented. Such processes represent an unprecedented reaction pathway for cobalt catalysis and a general approach that enable rapid construction of highly diversified enantioenriched allylic alcohols containing a 1,1-, 1,2-disubstituted and trisubstituted alkene as well as axial stereogenicity in up to 99 % yield and 99 : 1 er without the need of preformation of alkenyl-metal reagents. DFT calculations revealed the origin of enantioselectivity.
Collapse
Affiliation(s)
- Chuiyi Lin
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, postcode 200032, China
| | - Jiwu Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, postcode 200032, China
| | - Zhao Sun
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, postcode 200032, China
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, postcode 200032, China
| | - Qinglei Chong
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, postcode 200032, China
| | - Zhihan Zhang
- College of Chemistry, Central China Normal University, 152 Louyu Road, Wuhan, Hubei, 430079, China
| | - Fanke Meng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, postcode 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
- Beijing National Laboratory for Molecular Sciences, Beijing, 1000871, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
33
|
Nie X, Zhong S, Zou J, Tang Y, Xia Y, Cai Y. Asymmetric Construction of Functionalized Cyclopenta[ b]pyrrolines via Cascade Aza-Piancatelli/Hydroamination Reactions. Org Lett 2024; 26:6766-6770. [PMID: 39082870 DOI: 10.1021/acs.orglett.4c02485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
A chiral Brønsted acid/Pd that cooperatively catalyzed the asymmetric cascade aza-Piancatelli rearrangement/hydroamination of readily accessible alkynyl-functionalized tertiary furylcarbinols with anilines has been developed. This protocol provides expedient access to a variety of densely functionalized cyclopenta[b]pyrroline derivatives in high yields with excellent enantioselectivities.
Collapse
Affiliation(s)
- Xukun Nie
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Sishi Zhong
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Jiaming Zou
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yurong Tang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yong Xia
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| | - Yunfei Cai
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
34
|
Wang TT, Cao J, Li X. Synthesis of N-N Axially Chiral Pyrrolyl-oxoisoindolin via Isothiourea-Catalyzed Acylative Dynamic Kinetic Resolution. Org Lett 2024; 26:6179-6184. [PMID: 39023300 DOI: 10.1021/acs.orglett.4c02031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The development of methods for the asymmetric synthesis of N-N axial chirality remains elusive and challenging. Here, we disclose a method for the construction of N-N axially chiral pyrrolyl-oxoisoindolins along with central chirality via the isothiourea (ITU)-catalyzed acylative dynamic kinetic resolution (DKR). Axial chirality was introduced into the acylative DKR of hemiaminals for the first time. This protocol features mild conditions with excellent yields and enantioselectivities.
Collapse
Affiliation(s)
- Tong-Tong Wang
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jun Cao
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xin Li
- College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
35
|
Naghim A, Rodriguez J, Chuzel O, Chouraqui G, Bonne D. Enantioselective Synthesis of Heteroatom-Linked Non-Biaryl Atropisomers. Angew Chem Int Ed Engl 2024; 63:e202407767. [PMID: 38748462 DOI: 10.1002/anie.202407767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Indexed: 06/16/2024]
Abstract
Atropisomers hold significant fascination, not only for their prevalence in natural compounds but also for their biological importance and wide-ranging applications as chiral materials, ligands, and organocatalysts. While biaryl and heterobiaryl atropisomers are commonly studied, the enantioselective synthesis of less abundant heteroatom-linked non-biaryl atropisomers presents a formidable challenge in modern organic synthesis. Unlike classical atropisomers, these molecules allow rotation around two bonds, resulting in low barriers to enantiomerization through concerted bond rotations. In recent years the discovery of new configurationally stable rare non-biaryl scaffolds such as aryl amines, aryl ethers and aryl sulfones as well as innovative methodologies to control their configuration have been disclosed in the literature and constitute the topic of this minireview.
Collapse
Affiliation(s)
- Abdelati Naghim
- Aix Marseille Université, CNRS, Centrale Méditerranée, iSm2, 13397, Marseille, France
| | - Jean Rodriguez
- Aix Marseille Université, CNRS, Centrale Méditerranée, iSm2, 13397, Marseille, France
| | - Olivier Chuzel
- Aix Marseille Université, CNRS, Centrale Méditerranée, iSm2, 13397, Marseille, France
| | - Gaëlle Chouraqui
- Aix Marseille Université, CNRS, Centrale Méditerranée, iSm2, 13397, Marseille, France
| | - Damien Bonne
- Aix Marseille Université, CNRS, Centrale Méditerranée, iSm2, 13397, Marseille, France
| |
Collapse
|
36
|
Zhou HM, Liu C, Zhang Y, Ma AX, Luo ZH, Zhu YL, Ran XY, Xie SM, Wang BJ, Zhang JH, Yuan LM. Asymmetric catalytic synthesis of chiral covalent organic framework composite (S)-DTP-COF@SiO 2 for HPLC enantioseparations by normal-phase and reversed-phase chromatographic modes. Mikrochim Acta 2024; 191:445. [PMID: 38958767 DOI: 10.1007/s00604-024-06524-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/22/2024] [Indexed: 07/04/2024]
Abstract
A novel CCOF core-shell composite material (S)-DTP-COF@SiO2 was prepared via asymmetric catalytic and in situ growth strategy. The prepared (S)-DTP-COF@SiO2 was utilized as separation medium for HPLC enantioseparation using normal-phase and reversed-phase chromatographic modes, which displays excellent chiral separation performance for alcohols, esters, ketones, and epoxides, etc. Compared with chiral commercial chromatographic columns (Chiralpak AD-H and Chiralcel OD-H columns) and some previously reported chiral CCOF@SiO2 (CC-MP CCTF@SiO2 and MDI-β-CD-modified COF@SiO2)-packed columns, there are 4, 3, 13, and 15 tested racemic compounds that could not be resolved on the Chiralpak AD-H column, Chiralcel OD-H column, CC-MP CCTF@SiO2 column, and MDI-β-CD-modified COF@SiO2 column, respectively, which indicates that the resolution effect of (S)-DTP-COF@SiO2-packed column can be complementary to the other ones. The effects of the analyte mass, column temperature, and mobile phase composition on the enantiomeric separation were investigated. The chiral column exhibits good reproducibility after multiple consecutive injections. The RSDs (n = 5) of the peak area and retention time were less than 1.5% for repetitive separation of 2-methoxy-2-phenylethanol and 1-phenyl-1-pentanol. The chiral core-shell composite (S)-DTP-COF@SiO2 exhibited good enantiomeric separation performance, which not only demonstrates its potential as a novel CSP material in HPLC but also expands the range of applications for chiral COFs.
Collapse
Affiliation(s)
- Hong-Mei Zhou
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China
| | - Cheng Liu
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China
| | - Yue Zhang
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China
| | - An-Xu Ma
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China
| | - Zong-Hong Luo
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China
| | - Yu-Lan Zhu
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China
| | - Xiao-Yan Ran
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China
| | - Sheng-Ming Xie
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China.
| | - Bang-Jin Wang
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China.
| | - Jun-Hui Zhang
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China.
| | - Li-Ming Yuan
- Department of Chemistry, Yunnan Normal University, Kunming, 650500, PR China
| |
Collapse
|
37
|
Kotwal N, Chauhan P. Evolution in the asymmetric synthesis of biaryl ethers and related atropisomers. Chem Commun (Camb) 2024; 60:6837-6846. [PMID: 38767332 DOI: 10.1039/d4cc01655f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Axially chiral biaryl ethers and related compounds hold valuable potential in natural products, medicinal chemistry, and catalysis; however, their asymmetric syntheses have always been overlooked compared to other biaryl/hetero-biaryl atropisomers. Unlike the later class molecules bearing a single chiral axis, the former category possesses a unique type of atropisomerism bearing two potential axes. Due to their great importance in diverse research domains, catalytic atropselective biaryl ether synthesis has recently witnessed an upsurge. This highlight article provides an elaborated view on the developments of catalytic synthetic methods that have been explored to achieve dual axial chirality in biaryl ethers and related scaffolds.
Collapse
Affiliation(s)
- Namrata Kotwal
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu, 181221 J&K, India.
| | - Pankaj Chauhan
- Department of Chemistry, Indian Institute of Technology Jammu, Jagti, NH-44, Nagrota Bypass, Jammu, 181221 J&K, India.
| |
Collapse
|
38
|
Wen W, Yang C, Wu Z, Xiao D, Guo Q. Bifunctional Squaramide-Catalyzed Oxidative Kinetic Resolution: Simultaneous Access to Axially Chiral Thioether and Sulfoxide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402429. [PMID: 38751149 PMCID: PMC11267355 DOI: 10.1002/advs.202402429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/18/2024] [Indexed: 07/25/2024]
Abstract
Axially chiral thioethers and sulfoxides emerge as two pivotal classes of ligands and organocatalysts, which have remarkable features in the stereoinduction of various asymmetric transformations. However, the lack of easy methods to access such molecules with diverse structures has hampered their broader utilization. Herein, an oxidative kinetic resolution for sulfides using a chiral bifunctional squaramide as the catalyst with cumene hydroperoxide as the terminal oxidant is established. This asymmetric approach provides a variety of axially chiral thioethers as well as sulfoxides bearing both axial and central chirality, with excellent diastereo- and enantioselectivities. This catalytic system also successfully extends to the kinetic resolution of benzothiophene-based sulfides. Preliminary mechanism investigation indicates that the multiple hydrogen bonding interactions between the bifunctional squaramide catalyst and substrates play a crucial role in determining the enantioselectivity and reactivity.
Collapse
Affiliation(s)
- Wei Wen
- Key Laboratory of Applied Chemistry of Chongqing MunicipalityChongqing Key Laboratory of Soft‐Matter Material ManufacturingSchool of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715China
| | - Chang‐Lin Yang
- School of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715China
| | - Zhu‐Lian Wu
- School of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715China
| | - Dong‐Rong Xiao
- School of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715China
| | - Qi‐Xiang Guo
- Key Laboratory of Applied Chemistry of Chongqing MunicipalityChongqing Key Laboratory of Soft‐Matter Material ManufacturingSchool of Chemistry and Chemical EngineeringSouthwest UniversityChongqing400715China
| |
Collapse
|
39
|
Wang Y, Huang Y, Bao X, Wei X, Wei S, Qu J, Wang B. Organocatalytic diastereo- and atropo-selective construction of eight-membered bridged (hetero)biaryls via asymmetric intramolecular [3 + 2] cycloaddition. Chem Sci 2024; 15:8880-8887. [PMID: 38873056 PMCID: PMC11168085 DOI: 10.1039/d4sc01892c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
An unprecedented and straightforward route for the asymmetric construction of privileged atroposelective bridged (hetero)biaryl eight-membered scaffolds has been accomplished through chiral phosphoric acid catalyzed asymmetric intramolecular [3 + 2] cycloaddition of innovative (hetero)biaryl aldehydes with 3-aminooxindole hydrochlorides. A class of eight-membered bridged (hetero)biaryl lactones fused to spiro[pyrrolidine-oxindole] derivatives, possessing both chiral C-C/C-N axes and multiple contiguous stereocenters, were obtained in good yields with excellent enantioselectivities and diastereoselectivities in one step through this direct strategy. In addition, the good scalability and derivatization of the title compounds demonstrated their synthetic utility.
Collapse
Affiliation(s)
- Yue Wang
- Department of Pharmaceutical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Yue Huang
- Department of Pharmaceutical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Xiaoze Bao
- College of Pharmaceutical Science & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Xingfu Wei
- Department of Pharmaceutical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Shiqiang Wei
- Department of Pharmaceutical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Jingping Qu
- Department of Pharmaceutical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| | - Baomin Wang
- Department of Pharmaceutical Engineering, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology Dalian 116024 P. R. China
| |
Collapse
|
40
|
Li L, Ti W, Miao T, Ma J, Lin A, Chu Q, Gao S. Atroposelective Synthesis of Axially Chiral Diaryl Ethers by N-Heterocyclic-Carbene-Catalyzed Sequentially Desymmetric/Kinetic Resolution Process. J Org Chem 2024; 89:4067-4073. [PMID: 38391391 DOI: 10.1021/acs.joc.3c02912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
We describe herein an N-heterocyclic-carbene-catalyzed atroposelective synthesis of axially chiral diaryl ethers. Through a sequentially enantioselective desymmetric process and a kinetic resolution process, the products could be constructed in good yields with excellent enantiopurities. Both alcohols and phenols were compatible with this catalytic system. The axially chiral carboxylic acids derived from the esters were proven to be potential chiral ligands for asymmetric synthesis, for example, Rh(III)-catalyzed enantioselective C-H functionalization.
Collapse
Affiliation(s)
- Libo Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Wenqing Ti
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Tianshu Miao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jiao Ma
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Qian Chu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Shang Gao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
41
|
Mou K, Guo Y, Xu W, Li D, Wang Z, Wu Q. Stereodivergent Protein Engineering of Fatty Acid Photodecarboxylase for Light-Driven Kinetic Resolution of Sec-Alcohol Oxalates. Angew Chem Int Ed Engl 2024; 63:e202318374. [PMID: 38195798 DOI: 10.1002/anie.202318374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/03/2024] [Accepted: 01/09/2024] [Indexed: 01/11/2024]
Abstract
Stereodivergent engineering of one enzyme to create stereocomplementary variants for synthesizing optically pure molecules with tailor-made (R) or (S) configurations on an optional basis is highly desirable and challenging. This study aimed to engineer fatty acid photodecarboxylase from Chlorella variabilis (CvFAP) using the focused rational iterative site-specific mutagenesis (FRISM) strategy to obtain two highly stereocomplementary variants with excellent selectivity (both giving products with up to 99 % e.e.). These variants were used for the CvFAP-catalyzed light-driven kinetic resolution of oxalates or oxamic acids prepared from the corresponding sec-alcohols or amines, providing a new biotransformation process for preparing chiral sec-alcohols and amines. Molecular dynamics simulation, kinetic data and transient spectra revealed the source of selectivity. This study represents the first example of the kinetic resolution of sec-alcohols or amines catalyzed by a pair of stereocomplementary CvFAPs.
Collapse
Affiliation(s)
- Kaihao Mou
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China
| | - Yue Guo
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China
| | - Weihua Xu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China
| | - Danyang Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China
| | - Zhiguo Wang
- Institute of Aging Research, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qi Wu
- Center of Chemistry for Frontier Technologies, Department of Chemistry, Zijingang Campus, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|