1
|
Chen C, Xu H, Zhu S. Polarity-Reversed Functionalization of Aliphatic Aldehydes via Divergent Nickel Hydride Catalysis. Angew Chem Int Ed Engl 2024:e202419965. [PMID: 39665868 DOI: 10.1002/anie.202419965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/11/2024] [Accepted: 12/12/2024] [Indexed: 12/13/2024]
Abstract
Divergent catalysis represents an exciting frontier for unlocking molecular structural diversity and exploring new activation modes. Here, we report the unexpected discovery of polarity-reversed divergent activation and functionalization of aliphatic aldehydes, where enolizable aliphatic aldehydes are selectively activated by nickel hydride to form two distinct alkylnickel intermediates divergently. This mild and operationally simple process enables the transformation of a wide variety of readily available aliphatic aldehydes, along with alkyl or aryl electrophiles, into the corresponding secondary alcohols or more challenging deoxygenated alkanes with excellent chemoselectivity.
Collapse
Affiliation(s)
- Changpeng Chen
- State Key Laboratory of Coordination Chemistry, Engineering Research Center of Photoresist Materials, Ministry of Education, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210093, Nanjing, China
| | - Hanhong Xu
- State Key Laboratory of Coordination Chemistry, Engineering Research Center of Photoresist Materials, Ministry of Education, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210093, Nanjing, China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Engineering Research Center of Photoresist Materials, Ministry of Education, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, 210093, Nanjing, China
- School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 200240, Shanghai, China
| |
Collapse
|
2
|
Wang JW, Zhu QW, Liu D, Chen PW, Chen HZ, Lu X, Fu Y. Nickel-Catalyzed α-selective Hydroalkylation of Vinylarenes. Angew Chem Int Ed Engl 2024; 63:e202413074. [PMID: 39133520 DOI: 10.1002/anie.202413074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/13/2024]
Abstract
C(sp3) centers adjacent to (hetero) aryl groups are widely present in physiologically active molecules. Metal-hydride-catalyzed hydroalkylation of alkenes represents an efficient means of forging C(sp3)-C(sp3) bonds, boasting advantages as a wide source of substrates, mild reaction conditions, and facile selectivity manipulation. Nevertheless, the hydroalkylation of vinylarenes encounters constraints in terms of substrate scope, necessitating the employment of activated alkyl halides or alkenes containing chelating groups, remains a challenge. In this context, we report a general nickel-hydride-catalyzed hydroalkylation protocol for vinylarenes. Remarkably, this system enables α-selective hydroalkylation of both aryl and heteroaryl alkenes under an extra ligand-free condition, demonstrating excellent coupling efficiency and selectivity. Furthermore, through the incorporation of chiral bisoxazoline ligands, we have achieved regio- and enantioselective hydroalkylation of vinylpyrroles, thereby facilitating the synthesis of α-branched alkylated pyrrole derivatives.
Collapse
Affiliation(s)
- Jia-Wang Wang
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Qing-Wei Zhu
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Deguang Liu
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Pei-Wen Chen
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Hong-Zhong Chen
- School of Plant Protection, Anhui Agricultural University, Hefei, 230036, China
| | - Xi Lu
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Yao Fu
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
3
|
Wang SC, Liu L, Duan M, Xie W, Han J, Xue Y, Wang Y, Wang X, Zhu S. Regio- and Enantioselective Nickel-Catalyzed Ipso- and Remote Hydroamination Utilizing Organic Azides as Amino Sources for the Synthesis of Primary Amines. J Am Chem Soc 2024; 146:30626-30636. [PMID: 39442777 DOI: 10.1021/jacs.4c12324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Primary amines serve as key synthetic precursors to most other N-containing compounds, which are important in organic and medicinal chemistry. Herein, we present a NiH-catalyzed mild ipso- and remote hydroamination technique that utilizes organic azides as deprotectable primary amine sources. This strategy offers a highly flexible platform for the efficient construction of α-chiral branched primary amines, as well as linear primary amines.
Collapse
Affiliation(s)
- Shi-Chao Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Lin Liu
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Mei Duan
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Weijia Xie
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Jiabin Han
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yuhang Xue
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - You Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xiaotai Wang
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Zeng D, Liu Z, Huang G, Wang Y, Zhu S. Regio-, stereo-, and enantioselective ipso- and migratory defluorinative olefin cross-coupling to access highly functionalized monofluoroalkenes. Nat Commun 2024; 15:7645. [PMID: 39223147 PMCID: PMC11368934 DOI: 10.1038/s41467-024-52054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Monofluoroalkenes serve as nonhydrolyzable mimetics of amides and are frequently encountered in drug candidates. Herein we report a regio-, enantio-, and stereoselective NiH-catalyzed ipso- and migratory defluorinative olefin cross-coupling employing readily available olefins and gem-difluoroalkenes under mild conditions. This approach enables the efficient synthesis of a broad array of structurally diverse monofluoroalkenes bearing a tertiary allylic stereogenic center. Mechanistically, the challenging migratory defluorinative olefin cross-coupling process is successfully realized through a ligand relay catalytic strategy, enabling the formal C(sp3)-H/C(sp2)-F activation with high levels of regio-, stereo-, and enantiocontrol.
Collapse
Affiliation(s)
- Daning Zeng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zihao Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Guoce Huang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - You Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China.
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
5
|
Dhawa U, Lavrencic L, Hu X. Nickel-Catalyzed Enantio- and Diastereoselective Synthesis of Fluorine-Containing Vicinal Stereogenic Centers. ACS CENTRAL SCIENCE 2024; 10:1657-1666. [PMID: 39220696 PMCID: PMC11363326 DOI: 10.1021/acscentsci.4c00819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/24/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
The construction of fluorinated architectures has been a topic of interest to medicinal chemists due to their unique ability to improve the pharmacokinetic properties of bioactive compounds. However, the stereoselective synthesis of fluoro-organic compounds with vicinal stereogenic centers is a challenge. Herein, we present a directing-groupfree nickel-hydride catalyzed hydroalkylation of fluoroalkenes to afford fluorinated motifs with two adjacent chiral centers in excellent yields and stereoselectivities. Our method provides expedient access to biologically relevant, highly enantioenriched organofluorine compounds. Furthermore, the strategy can be used for the diastereo- and enantioselective synthesis of vicinal difluorides, which have recently gained attention in the fields of organocatalysis and peptide mimics.
Collapse
Affiliation(s)
| | | | - Xile Hu
- Laboratory of Inorganic Synthesis
and Catalysis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale
de Lausanne (EPFL), ISIC-LSCI, Lausanne 1015, Switzerland
| |
Collapse
|
6
|
Huang J, Yan X, Liu X, Chen Z, Jiang T, Zhang L, Ju G, Huang G, Wang C. Enantioselective Ni-Catalyzed 1,2-Borylalkynylation of Unactivated Alkenes. J Am Chem Soc 2024; 146:17140-17149. [PMID: 38864776 DOI: 10.1021/jacs.4c03022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Enantioselective three-component difunctionalization of alkenes with boron reagents represents an attractive strategy for assembling three-dimensional chiral organoboron compounds. However, regio- and enantiocontrol comprise the pivot challenges in these transformations, which predominantly require the use of activated conjugated alkenes. Herein, by utilizing various carbonyl directing groups, including amides, sulfinamides, ketones, and esters, we succeed in realizing a nickel-catalyzed 1,2-borylalkynylation of unactivated alkenes to enable the simultaneous incorporation of a boron entity and an sp-fragment across the double bond. The products contain boryl, alkynyl, and carbonyl functional groups with orthogonal synthetic reactivities, offering three handles for further derivatization to access valuable intermediates. The utility of this ligand-enabled asymmetric protocol has been highlighted through the late-stage decoration of drug-relevant molecules.
Collapse
Affiliation(s)
- Jie Huang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Xueyuan Yan
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Xuanyu Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Zhengyang Chen
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Tao Jiang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Lanlan Zhang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Guodong Ju
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| | - Genping Huang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, P. R. China
| | - Chao Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, P. R. China
| |
Collapse
|
7
|
Lu L, Chen S, Kong W, Gao B, Li Y, Zhu L, Yin G. Enantioselective Synthesis of β-Aminoboronic Acids via Borylalkylation of Enamides. J Am Chem Soc 2024. [PMID: 38853359 DOI: 10.1021/jacs.4c03700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Aminoboronic acids represent a class of significant compounds that have attracted significant attention in the fields of drug discovery and organic synthesis. Despite notable progress in their synthesis, the efficient construction of chiral β-aminoboronic acids with alkyl side chains remains a challenging endeavor. Here, we introduce an unprecedented nickel-catalyzed asymmetric borylalkylation of enamides, employing a simple chiral diamine ligand, readily available B2pin2, and alkyl halides as coupling partners. This reaction serves as an efficient platform for assembling a diverse range of β-aminoboronic acid derivatives with flexible alkyl side chains, displaying exceptional regio-, stereo-, and enantioselectivities. Moreover, this transformation exhibits a broad substrate scope and remarkable tolerance toward various functional groups. Theoretical calculations demonstrate that the benzyl group on the ligand is the key to the high enantiocontrol in this transformation. Additionally, we exemplify the practical application of this strategy through the concise synthesis of complex bioactive molecules.
Collapse
Affiliation(s)
- Liguo Lu
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Shuhan Chen
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Wuhan, Hubei 430072, P. R. China
| | - Weiyu Kong
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Ben Gao
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Yangyang Li
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, P. R. China
| | - Lei Zhu
- Hubei Key Laboratory of Quality Control of Characteristic Fruits and Vegetables, Hubei Engineering University, Wuhan, Hubei 430072, P. R. China
| | - Guoyin Yin
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei 430072, P. R. China
| |
Collapse
|
8
|
Ren J, Sun Z, Zhao S, Huang J, Wang Y, Zhang C, Huang J, Zhang C, Zhang R, Zhang Z, Ji X, Shao Z. Enantioselective synthesis of chiral α,α-dialkyl indoles and related azoles by cobalt-catalyzed hydroalkylation and regioselectivity switch. Nat Commun 2024; 15:3783. [PMID: 38710722 DOI: 10.1038/s41467-024-48175-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/23/2024] [Indexed: 05/08/2024] Open
Abstract
General, catalytic and enantioselective construction of chiral α,α-dialkyl indoles represents an important yet challenging objective to be developed. Herein we describe a cobalt catalyzed enantioselective anti-Markovnikov alkene hydroalkylation via the remote stereocontrol for the synthesis of α,α-dialkyl indoles and other N-heterocycles. This asymmetric C(sp3)-C(sp3) coupling features high flexibility in introducing a diverse set of alkyl groups at the α-position of chiral N-heterocycles. The utility of this methodology has been demonstrated by late-stage functionalization of drug molecules, asymmetric synthesis of bioactive molecules, natural products and functional materials, and identification of a class of molecules exhibiting anti-apoptosis activities in UVB-irradiated HaCaT cells. Ligands play a vital role in controlling the reaction regioselectivity. Changing the ligand from bi-dentate L6 to tridentate L12 enables CoH-catalyzed Markovnikov hydroalkylation. Mechanistic studies disclose that the anti-Markovnikov hydroalkylation involves a migratory insertion process while the Markovnikov hydroalkylation involves a MHAT process.
Collapse
Affiliation(s)
- Jiangtao Ren
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
- Southwest United Graduate School, 650092, Kunming, China
| | - Zheng Sun
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Shuang Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
- School of Pharmacy, Yunnan University, 650500, Kunming, China
| | - Jinyuan Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
- School of Pharmacy, Yunnan University, 650500, Kunming, China
| | - Yukun Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Cheng Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
- School of Pharmacy, Yunnan University, 650500, Kunming, China
| | - Jinhai Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Chenhao Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
| | - Ruipu Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China
- School of Pharmacy, Yunnan University, 650500, Kunming, China
| | - Zhihan Zhang
- College of Chemistry, Central China Normal University, 430079, Wuhan, China.
| | - Xu Ji
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China.
- School of Pharmacy, Yunnan University, 650500, Kunming, China.
| | - Zhihui Shao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, School of Chemical Science and Technology, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, 650500, Kunming, China.
- Southwest United Graduate School, 650092, Kunming, China.
| |
Collapse
|
9
|
Zhou J, He Y, Liu Z, Wang Y, Zhu S. Ligand Relay Catalysis Enables Asymmetric Migratory Hydroarylation for the Concise Synthesis of Chiral α-(Hetero)Aryl-Substituted Amines. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306447. [PMID: 38419384 DOI: 10.1002/advs.202306447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/19/2023] [Indexed: 03/02/2024]
Abstract
Complementary to the design of a single structurally complex chiral ligand to promote each step in transition-metal catalysis, multiligand relay catalysis through dynamic ligand exchange with each step in the catalytic cycle promoted by its best ligand provides an attractive approach to enhance the whole reaction reactivity and selectivity. Herein, a regio- and enantioselective NiH-catalyzed migratory hydroarylation process with a simple combination of a chain-walking ligand and an asymmetric arylation ligand, producing high-value chiral α-(hetero)aryl-substituted amines and their derivatives under mild conditions, is reported. The potential synthetic applications of this transformation are demonstrated by the concise synthesis of (S)-nicotine and a CDK8 inhibitor.
Collapse
Affiliation(s)
- Junqian Zhou
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Yuli He
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Zihao Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - You Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
10
|
Hossain A, Anderson RL, Zhang CS, Chen PJ, Fu GC. Nickel-Catalyzed Enantioconvergent and Diastereoselective Allenylation of Alkyl Electrophiles: Simultaneous Control of Central and Axial Chirality. J Am Chem Soc 2024; 146:7173-7177. [PMID: 38447585 PMCID: PMC11003353 DOI: 10.1021/jacs.4c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
In recent years, remarkable progress has been described in the development of methods that simultaneously control vicinal stereochemistry, wherein both stereochemical elements are central chirality; in contrast, methods that control central and axial chirality are comparatively rare. Herein we report that a chiral nickel catalyst achieves the enantioconvergent and diastereoselective coupling of racemic secondary alkyl electrophiles with prochiral 1,3-enynes (in the presence of a hydrosilane) to generate chiral tetrasubstituted allenes that bear an adjacent stereogenic center. A carbon-carbon and a carbon-hydrogen bond are formed in this process, which provides good stereoselectivity and is compatible with an array of functional groups.
Collapse
Affiliation(s)
- Asik Hossain
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Robert L Anderson
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Claudia S Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Peng-Jui Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Gregory C Fu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
11
|
Li Z, Liu B, Yao CY, Gao GW, Zhang JY, Tong YZ, Zhou JX, Sun HK, Liu Q, Lu X, Fu Y. Ligand-Controlled Cobalt-Catalyzed Regio-, Enantio-, and Diastereoselective Oxyheterocyclic Alkene Hydroalkylation. J Am Chem Soc 2024; 146:3405-3415. [PMID: 38282378 DOI: 10.1021/jacs.3c12881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Metal-hydride-catalyzed alkene hydroalkylation has been developed as an efficient method for C(sp3)-C(sp3) coupling with broad substrate availability and high functional group compatibility. However, auxiliary groups, a conjugated group or a chelation-directing group, are commonly required to attain high regio- and enantioselectivities. Herein, we reported a ligand-controlled cobalt-hydride-catalyzed regio-, enantio-, and diastereoselective oxyheterocyclic alkene hydroalkylation without chelation-directing groups. This reaction enables the hydroalkylation of conjugated and unconjugated oxyheterocyclic alkenes to deliver C2- or C3-alkylated tetrahydrofuran or tetrahydropyran in uniformly good yields and with high regio- and enantioselectivities. In addition, hydroalkylation of C2-substituted 2,5-dihydrofuran resulted in the simultaneous construction of 1,3-distereocenters, providing convenient access to polysubstituted tetrahydrofuran with multiple enantioenriched C(sp3) centers.
Collapse
Affiliation(s)
- Zhen Li
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Bingxue Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Cheng-Yu Yao
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Gen-Wei Gao
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Jun-Yang Zhang
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Yi-Zhou Tong
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Jing-Xiang Zhou
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Hao-Kai Sun
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Qiang Liu
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xi Lu
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| | - Yao Fu
- Key Laboratory of Precision and Intelligent Chemistry, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
12
|
Lee C, Kang HJ, Hong S. NiH-catalyzed C-N bond formation: insights and advancements in hydroamination of unsaturated hydrocarbons. Chem Sci 2024; 15:442-457. [PMID: 38179526 PMCID: PMC10763554 DOI: 10.1039/d3sc05589b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
The formation of C-N bonds is a fundamental aspect of organic synthesis, and hydroamination has emerged as a pivotal strategy for the synthesis of essential amine derivatives. In recent years, there has been a surge of interest in metal hydride-catalyzed hydroamination reactions of common alkenes and alkynes. This method avoids the need for stoichiometric organometallic reagents and overcomes problems associated with specific organometallic compounds that may impact functional group compatibility. Notably, recent developments have brought to the forefront olefinic hydroamination and hydroamidation reactions facilitated by nickel hydride (NiH) catalysis. The inclusion of suitable chiral ligands has paved the way for the realization of asymmetric hydroamination reactions in the realm of olefins. This review aims to provide an in-depth exploration of the latest achievements in C-N bond formation through intermolecular hydroamination catalyzed by nickel hydrides. Leveraging this innovative approach, a diverse range of alkene and alkyne substrates can be efficiently transformed into value-added compounds enriched with C-N bonds. The intricacies of C-N bond formation are succinctly elucidated, offering a concise overview of the underlying reaction mechanisms. It is our aspiration that this comprehensive review will stimulate further progress in NiH-catalytic techniques, fine-tune reaction systems, drive innovation in catalyst design, and foster a deeper understanding of the underlying mechanisms.
Collapse
Affiliation(s)
- Changseok Lee
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Hyung-Joon Kang
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| | - Sungwoo Hong
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
| |
Collapse
|
13
|
Wang Y, He Y, Zhu S. Nickel-Catalyzed Migratory Cross-Coupling Reactions: New Opportunities for Selective C-H Functionalization. Acc Chem Res 2023; 56:3475-3491. [PMID: 37971926 DOI: 10.1021/acs.accounts.3c00540] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
ConspectusMigratory cross-coupling via metal migration is a process of significant academic and industrial interest. It provides an attractive alternative for the selective installation of a functional group at remote C-H positions from simple precursors, thus enabling the direct synthesis of challenging structures not accessible with traditional cross-coupling. In particular, with the merger of 1,n-Ni/H shift and cross-coupling of nickel, the Ni-catalyzed migratory functionalization of simple precursors has undergone particularly intense development and emerged as a valuable field of research in the past few years. This Account will outline the recent progress made in this arena in terms of migration-functionalization modes, diverse functionalizations, and strategies for regio- and stereocontrol. Mechanistic studies and synthetic applications are also discussed.In detail, we systematically categorize our work into two parts based on the migration modes. In the first part, a platform is created for Ni-catalyzed migratory sp3 C-H functionalization of alkenes or alkyl halides via iterative 1,2-Ni/H shift-selective cross-coupling. The key reactive Ni(II)H species for chain-walking could be generated in situ either in a polarity-reversed fashion relying on stoichiometric reductants (X-Ni(II)-H) or in a redox-neutral fashion with the participation of nucleophilic coupling partners (FG-Ni(II)-H). One significant advantage associated with the polarity-reversed NiH system is the use of relatively stable, abundant, and safe olefin surrogates or alkyl halides instead of the sensitive organometallics required in traditional cross-coupling reactions. Another advantage is that diverse functionalizations, including carbonation and more challenging amination and thiolation could be smoothly achieved with suitable electrophiles or their precursors. Finally, to address the challenging multifaceted selectivity and reactivity issues in asymmetric migratory cross-coupling reactions, we have developed a feasible ligand relay catalytic strategy. In this dynamic ligand exchange process, one ligand promotes rapid migration while the other promotes highly regio- and stereoselective coupling. This innovative strategy overcomes the formidable challenge stemming from the difficulty of designing a single ligand to efficiently promote both steps of chain-walking and asymmetric coupling. In the second part, a new platform for Ni-catalyzed migratory sp2 C-H functionalization via 1,4-Ni/H shift-selective cross-coupling has been reported. Starting from readily available aryl or vinyl coupling partners, the in situ-generated aryl- or vinylnickel(II) species could undergo a rapid and reversible 1,4-Ni/H shift along an sp2 backbone, and subsequent selective coupling with various coupling partners would allow regio- and stereoselective access to diverse 1,4-migratory functionalization products. The key to success was the discovery of an appropriate ligand to efficiently promote both migration and subsequent selective cross-coupling. A vinyl-to-aryl 1,4-Ni/H shift successfully enables the modular ipso/ortho difunctionalization of aryl coupling partners, while an aryl-to-vinyl 1,4-Ni/H shift enables regio- and stereoselective access to functionalized trisubstituted alkenes.We hope that this Account will inspire broad interest and future development of migratory cross-coupling reactions. We strongly believe that continued efforts in this fascinating field will overcome many of the remaining challenges, including cutting-edge ligand/catalyst design to enhance reactivity and selectivity, conceptually new migration modes for additional transformations, and in-depth mechanistic studies for rational reaction design.
Collapse
Affiliation(s)
- You Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Yuli He
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|