1
|
Wang C, Liu Y, Wan JP. Construction of Fused Oxacyclic Compounds via Dual α- and β-C-H Functionalization and Ring Decomposition of Cyclic Ethers. Org Lett 2025; 27:3983-3987. [PMID: 40179307 DOI: 10.1021/acs.orglett.5c00946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
A new synthetic method for the synthesis of bicyclic scaffolds featuring a dihydropyran and tetrahydrofuran (THF) hybrid in the fashion of a fused structure with excellent syn-selectivity is realized via the reactions of enaminones and THF. In addition to displaying a dual role as both a cyclic fragment and a one-carbon synthon, the current method also shows a rarely known mode of two vicinal C-H bonds' functionalization in THF or analogous oxa-heterocycles.
Collapse
Affiliation(s)
- Chenxu Wang
- Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China
| | - Yunyun Liu
- Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China
| | - Jie-Ping Wan
- Jiangxi Province Key Laboratory of Natural and Biomimetic Drugs Research, College of Chemistry and Materials, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
2
|
Zhu S, Zhang H, Sun B, Bai Z, He G, Chen G, Wang H. Nitrene-mediated aminative N-N-N coupling: facile access to triazene 1-oxides. Chem Sci 2025; 16:6458-6467. [PMID: 40103730 PMCID: PMC11912504 DOI: 10.1039/d5sc00064e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/09/2025] [Indexed: 03/20/2025] Open
Abstract
Significant progress has been made in metal-catalyzed cross-coupling reactions over the past few decades. However, the development of innovative aminative coupling strategies remains highly desirable. Herein, we report a nitrene-mediated aminative N-N-N coupling reaction that leverages an anomeric amide as a key reagent to bridge amines with nitrosoarenes. This strategy enables the in situ generation of an aminonitrene intermediate, which is efficiently intercepted by nitrosoarenes, providing a direct, mild, and highly efficient route to triazene 1-oxides. Mechanistic investigations reveal that the N-substituents of the amine play a crucial role in modulating the reactivity of the aminonitrene intermediate. Complementary computational studies further indicate that aminonitrene acts as a nucleophile, while nitrosobenzene serves as an electrophile. Notably, aminonitrene-nitrosoarene coupling is significantly favored due to a substantial reduction in distortion energy, effectively outcompeting the nitrene dimerization pathway.
Collapse
Affiliation(s)
- Shiyang Zhu
- State Key Laboratory, Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Hairuo Zhang
- State Key Laboratory, Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Boyang Sun
- State Key Laboratory, Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Ziqian Bai
- State Key Laboratory, Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
| | - Gang He
- State Key Laboratory, Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
- Frontiers Science Center for New Organic Matter, Nankai University Tianjin 300071 China
| | - Gong Chen
- State Key Laboratory, Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
- Frontiers Science Center for New Organic Matter, Nankai University Tianjin 300071 China
| | - Hao Wang
- State Key Laboratory, Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University Tianjin 300071 China
- Frontiers Science Center for New Organic Matter, Nankai University Tianjin 300071 China
| |
Collapse
|
3
|
Bariwal J, Van der Eycken E. Harnessing Visible/UV Light for the Activation and/or Functionalization of C-H Bonds: Metal- and Photocatalyst-Free Approach. CHEM REC 2025; 25:e202400227. [PMID: 40072335 DOI: 10.1002/tcr.202400227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/13/2025] [Indexed: 04/13/2025]
Abstract
Photosynthesis in plants has inspired photochemical reactions in organic chemistry. Synthetic organic chemists always seek cost-effective, operationally simple, averting the use of toxic and difficult-to-remove metallic catalysts, atom economical, and high product purity in organic reactions. In the last few decades, the use of light as a catalyst in organic reactions has increased exponentially as literature has exploded with examples, particularly by using toxic and expensive metal complexes, photosensitizers like organic dyes, hypervalent iodine, or by using inorganic semiconductors. In this report, we have selected a few interesting examples of photochemical reactions performed without using any metallic catalyst or photosensitizers. These examples use the inherent potential of reactants to utilize light energy to initiate chemical reactions. Our main emphasis is to highlight the structural features in the reactants that can absorb light energy or form an electron donor-acceptor (EDA) complex during the reaction to initiate the photochemical reaction. Considering the high degree of variability in the photochemical reactions, the utmost care has been taken to present the most accurate reaction conditions. A short introductory section on photochemical reactions will act as an anchor that will revolve around the examples discussed and explain the underlying principle of the photochemical reaction mechanism.
Collapse
Affiliation(s)
- Jitender Bariwal
- University of Leuven, KU Leuven), LOMAC Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Erik Van der Eycken
- University of Leuven, KU Leuven), LOMAC Celestijnenlaan 200F, B-3001, Leuven, Belgium
- Organic Chemistry Department, Peoples' Friendship University of Russia, RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russia
| |
Collapse
|
4
|
Angeli C, Atienza-Sanz S, Schröder S, Hein A, Li Y, Argyrou A, Osipyan A, Terholsen H, Schmidt S. Recent Developments and Challenges in the Enzymatic Formation of Nitrogen-Nitrogen Bonds. ACS Catal 2025; 15:310-342. [PMID: 39781334 PMCID: PMC11705231 DOI: 10.1021/acscatal.4c05268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/12/2025]
Abstract
The biological formation of nitrogen-nitrogen (N-N) bonds represents intriguing reactions that have attracted much attention in the past decade. This interest has led to an increasing number of N-N bond-containing natural products (NPs) and related enzymes that catalyze their formation (referred to in this review as NNzymes) being elucidated and studied in greater detail. While more detailed information on the biosynthesis of N-N bond-containing NPs, which has only become available in recent years, provides an unprecedented source of biosynthetic enzymes, their potential for biocatalytic applications has been minimally explored. With this review, we aim not only to provide a comprehensive overview of both characterized NNzymes and hypothetical biocatalysts with putative N-N bond forming activity, but also to highlight the potential of NNzymes from a biocatalytic perspective. We also present and compare conventional synthetic approaches to linear and cyclic hydrazines, hydrazides, diazo- and nitroso-groups, triazenes, and triazoles to allow comparison with enzymatic routes via NNzymes to these N-N bond-containing functional groups. Moreover, the biosynthetic pathways as well as the diversity and reaction mechanisms of NNzymes are presented according to the direct functional groups currently accessible to these enzymes.
Collapse
Affiliation(s)
- Charitomeni Angeli
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Sara Atienza-Sanz
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Simon Schröder
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Annika Hein
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Yongxin Li
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Alexander Argyrou
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Angelina Osipyan
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Henrik Terholsen
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| | - Sandy Schmidt
- Department
of Chemical and Pharmaceutical Biology, Groningen Research Institute
of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713AV, The Netherlands
| |
Collapse
|
5
|
Budnikov AS, Leonov NE, Klenov MS, Shevchenko MI, Dvinyaninova TY, Krylov IB, Churakov AM, Fedyanin IV, Tartakovsky VA, Terent'ev AO. Ammonium Dinitramide as a Prospective N-NO 2 Synthon: Electrochemical Synthesis of Nitro- NNO-Azoxy Compounds from Nitrosoarenes. Molecules 2024; 29:5563. [PMID: 39683721 DOI: 10.3390/molecules29235563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
In this study, the electrochemical coupling of nitrosoarenes with ammonium dinitramide is discovered, leading to the facile construction of the nitro-NNO-azoxy group, which represents an important motif in the design of energetic materials. Compared to known approaches to nitro-NNO-azoxy compounds involving two chemical steps (formation of azoxy group containing a leaving group and its nitration) and demanding expensive, corrosive, and hygroscopic nitronium salts, the presented electrochemical method consists of a single step and is based solely on nitrosoarenes and ammonium dinitramide. The dinitramide salt plays the roles of both the electrolyte and reactant for the coupling. Despite the fact that many side reactions can be expected due to the redox-activity of both the reagents and target products, under optimized conditions the synthesis is performed in an undivided cell under constant current conditions with high current density and can be easily scaled up without a reduction in the product yield. Moreover, the synthesized nitro-NNO-azoxy compounds are discovered to be potent fungicides active against a broad range of phytopathogenic fungi.
Collapse
Affiliation(s)
- Alexander S Budnikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia
- Higher Chemical College of the Russian Academy of Sciences, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia
| | - Nikita E Leonov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia
| | - Michael S Klenov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia
| | - Mikhail I Shevchenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia
| | - Tatiana Y Dvinyaninova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia
- Higher Chemical College of the Russian Academy of Sciences, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia
| | - Igor B Krylov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia
- Higher Chemical College of the Russian Academy of Sciences, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia
| | - Aleksandr M Churakov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia
| | - Ivan V Fedyanin
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28 Vavilova Str., 119991 Moscow, Russia
| | - Vladimir A Tartakovsky
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prosp., 119991 Moscow, Russia
- Higher Chemical College of the Russian Academy of Sciences, D. I. Mendeleev University of Chemical Technology of Russia, 9 Miusskaya Square, 125047 Moscow, Russia
| |
Collapse
|
6
|
Hasani M, Kalhor HR. A Dual CQD-Catalysis and H-Bond Acceptor for Controlling Product Selectivity and Regioselectivity in Symmetric/Unsymmetric Azoxy Arenes. J Org Chem 2024; 89:13836-13846. [PMID: 39319746 DOI: 10.1021/acs.joc.4c00373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Azoxy arenes are valuable compounds in different areas of chemistry, such as organic chemistry, medicinal chemistry, and natural product chemistry. Despite their value, the regioselective synthesis of unsymmetric azoxybenzenes has remained a real challenge in the field. Herein, the product selectivity in oxidative homocoupling of anilines into symmetric azoxybenzenes was first achieved by an asparagine-functionalized CQD catalyst. Subsequently, in the cross-coupling of anilines into the unsymmetric azoxybenzenes via an ortho H-bond acceptor (HBA) on one of the coupling anilines, the regioselectivity was effectively controlled. It was demonstrated that ortho-HBA could mechanistically establish a six-membered intramolecular hydrogen-bonded ring on an N,N'-dihydroxy intermediate. The formed hydrogen bond makes the nearby nitrogen eminently suitable for the slow dehydration step. As a result, the functional oxygen of the azoxy compound is placed far from the HBA. The o-HBA mechanism also controls the regioselectivity ratio in which 1:0 (with an intramolecular H-bonded hexagonal ring), 2:1 (with an intramolecular H-bonded pentagonal ring), and 1:1 (without an ortho-HBA) isomeric mixtures could be achieved. The HBA mechanism was exploited by different substituted anilines, and various unsymmetric azoxybenzenes were synthesized. Finally, with the aid of mechanistic studies, a plausible mechanism for the reaction was proposed.
Collapse
Affiliation(s)
- Morteza Hasani
- Biochemistry and Chemical Biology Research Laboratory, Chemistry Department, Sharif University of Technology, Tehran 11365-11155, Iran
| | - Hamid R Kalhor
- Biochemistry and Chemical Biology Research Laboratory, Chemistry Department, Sharif University of Technology, Tehran 11365-11155, Iran
| |
Collapse
|
7
|
Li H, Huang Y, Chen F, Zeng Z, Hollmann F, Wu X, Zhang X, Duan P, Su H, Shi J, Sheng X, Zhang W. Unspecific peroxygenase enabled formation of azoxy compounds. Nat Commun 2024; 15:8312. [PMID: 39333130 PMCID: PMC11436639 DOI: 10.1038/s41467-024-52648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024] Open
Abstract
Enzymes are making a significant impact on chemical synthesis. However, the range of chemical products achievable through biocatalysis is still limited compared to the vast array of products possible with organic synthesis. For instance, azoxy products have rarely been synthesized using enzyme catalysts. In this study, we discovered that fungal unspecific peroxygenases are promising catalysts for synthesizing azoxy products from simple aniline starting materials. The catalytic features (up to 48,450 turnovers and a turnover frequency of 6.7 s-1) and substrate transformations (up to 99% conversion with 98% chemoselectivity) highlight the synthetic potential. We propose a mechanism where peroxygenase-derived hydroxylamine and nitroso compounds spontaneously (non-enzymatically) form the desired azoxy products. This work expands the reactivity repertoire of biocatalytic transformations in the underexplored field of azoxy compound formation reactions.
Collapse
Affiliation(s)
- Huanhuan Li
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yawen Huang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| | - Fuqiang Chen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| | - Zhigang Zeng
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning, Hubei, 437100, China
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Vander Maasweg9, 2629 HZ, Delft, The Netherlands
| | - Xin Wu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| | - Xiyang Zhang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| | - Peigao Duan
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Hao Su
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China
| | - Jianjun Shi
- College of Chemistry and Chemical Engineering Hainan Normal University Haikou, 571158, Haikou, China
| | - Xiang Sheng
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China.
| | - Wuyuan Zhang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin, 300308, China.
| |
Collapse
|
8
|
Empel C, Pham QH, Koenigs RM. Spin States Matter─from Fundamentals toward Synthetic Methodology Development and Drug Discovery. Acc Chem Res 2024; 57:2717-2727. [PMID: 39221592 DOI: 10.1021/acs.accounts.4c00405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
ConspectusThe potent reactivity of carbenes and nitrenes has been traditionally harnessed by the employment of a transition-metal catalyst in which the reactivity of the metal carbene/nitrene intermediates can be controlled via the judicious tuning of the metal catalyst. In recent years, progress made in this research area has unveiled novel strategies to directly access free carbenes or nitrenes under visible-light-mediated conditions without the necessity of a metal catalyst for stabilization of the carbene/nitrene intermediate. Such photochemical approaches present new opportunities to leverage orthogonal reactions with classic metal-catalyzed transformations.In this Account, we describe the major contributions from our group over the past years pushing the boundaries of light-mediated carbene and nitrene transfer reactions. In the first section, the development from purely singlet carbene chemistry toward methods that allow access to triplet carbene intermediates will be dissected. We describe how the triplet spin state of reagents provides a rich array of novel synthetic methods that build on the fundamentals of spin conservation. We lay out the different strategies in accessing the triplet spin state of carbenes (i.e., via electronic stabilization, via triplet sensitization with suitable photocatalysts, or via exploitation of geometric features of these intermediates), followed by an analysis of how the triplet spin state can be employed to leverage reactions distinct to the classic singlet carbene chemistry.The second part focuses on free nitrene intermediates, whereby both photochemical and photocatalytic strategies are analyzed and compared. We initiate with a discussion of the reactivity of iminoiodinanes as nitrene precursors in the presence of a photocatalyst or under photochemical conditions and how these two approaches result in fundamentally distinct nitrogen-based intermediates. While a nitrene radical anion is formed under photocatalytic conditions, triplet nitrene is generated under photochemical conditions. We commence with an outline of the basic reactivity of nitrene transfer reactions under both conditions, with a focus on the reaction with substrates containing double bonds. Finally, the latest developments in advanced cycloaddition chemistry beyond classic aziridination reactions are examined, with a special emphasis on the relay of the triplet nitrene reactivity to enable a Pauson-Khand-like (2 + 2 + 1) cycloaddition reaction that offers convenient access to high value bioisosteres in drug discovery.The work from our group on spin-dependent reactivities offers insight into important fundamentals in synthesis, where the spin state of the reactive intermediate will dictate the reaction outcome. We hope this may inspire others to widen the scope of applications of light-mediated carbene and/or nitrene transfer reactions, and furthermore, we anticipate that these understandings may also enable the development of advanced catalytic systems featuring triplet metal carbene/nitrene intermediates.
Collapse
Affiliation(s)
- Claire Empel
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Quoc Hoang Pham
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Rene M Koenigs
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
9
|
He S, Feng B, Tang Y, Chen R, Guo Y, Koenigs RM. Photochemical α-amination of carbonyl groups with iodinanes. Chem Commun (Camb) 2024; 60:10128-10131. [PMID: 39189815 DOI: 10.1039/d4cc03564j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
We report on a photochemical reaction of silyl enol ethers with iminoiodinanes. This aza Rubottom reaction provides a direct access towards α-amino carbonyl compounds under catalyst free reaction conditions with light as the sole source of energy. Control experiments suggest the participation of triplet nitrene intermediates.
Collapse
Affiliation(s)
- Suyuan He
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074 Aachen, Germany.
| | - Boya Feng
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074 Aachen, Germany.
| | - Yiben Tang
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074 Aachen, Germany.
| | - Ruiping Chen
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074 Aachen, Germany.
| | - Yujing Guo
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074 Aachen, Germany.
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, 52074 Aachen, Germany.
| |
Collapse
|
10
|
Mitchell J, Hussain WA, Bansode AH, O’Connor RM, Parasram M. Aziridination via Nitrogen-Atom Transfer to Olefins from Photoexcited Azoxy-Triazenes. J Am Chem Soc 2024; 146:9499-9505. [PMID: 38522088 PMCID: PMC11009954 DOI: 10.1021/jacs.3c14713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/26/2024]
Abstract
Herein, we report that readily accessible azoxy-triazenes can serve as nitrogen atom sources under visible light excitation for the phthalimido-protected aziridination of alkenes. This approach eliminates the need for external oxidants, precious transition metals, and photocatalysts, marking a departure from conventional methods. The versatility of this transformation extends to the selective aziridination of both activated and unactivated multisubstituted alkenes of varying electronic profiles. Notably, this process avoids the formation of competing C-H insertion products. The described protocol is operationally simple, scalable, and adaptable to photoflow conditions. Mechanistic studies support the idea that the photofragmentation of azoxy-triazenes results in the generation of a free singlet nitrene. Furthermore, a mild photoredox-catalyzed N-N cleavage of the protecting group to furnish the free aziridines is reported. Our findings contribute to the advancement of sustainable and practical methodologies for the synthesis of nitrogen-containing compounds, showcasing the potential for broader applications in synthetic chemistry.
Collapse
Affiliation(s)
- Joshua
K. Mitchell
- Department of Chemistry, New
York University, New York, New York 10003, United States
| | - Waseem A. Hussain
- Department of Chemistry, New
York University, New York, New York 10003, United States
| | - Ajay H. Bansode
- Department of Chemistry, New
York University, New York, New York 10003, United States
| | - Ryan M. O’Connor
- Department of Chemistry, New
York University, New York, New York 10003, United States
| | - Marvin Parasram
- Department of Chemistry, New
York University, New York, New York 10003, United States
| |
Collapse
|