1
|
Bhoyare VW, Bera A, Gandon V, Patil NT. Gold-Catalyzed Alkoxy-Carbonylation of Aryl and Vinyl Iodides. Angew Chem Int Ed Engl 2024; 63:e202410794. [PMID: 39039857 DOI: 10.1002/anie.202410794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/22/2024] [Accepted: 07/22/2024] [Indexed: 07/24/2024]
Abstract
Herein, for the first time, we disclose the gold-catalyzed alkoxy-carbonylation of aryl and vinyl iodides utilizing ligand-enabled Au(I)/Au(III) redox catalysis. The present methodology is found to be general, efficient, employs mild reaction conditions and showcases a broad substrate scope even with structurally complex molecules. Density functional theory (DFT) calculations revealed mechanistic pathways distinct from those of conventional transition metal-catalyzed carbonylation reactions.
Collapse
Affiliation(s)
- Vivek W Bhoyare
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-, 462 066, India
| | - Asish Bera
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-, 462 066, India
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (UMR CNRS 8182), Paris-Saclay University, bâtiment Henri Moissan, 17 avenue des sciences, 91400, Orsay, France
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-, 462 066, India
| |
Collapse
|
2
|
Paroi B, Pegu C, Mane MV, Patil NT. Gold-Catalyzed Arylative Cope Rearrangement. Angew Chem Int Ed Engl 2024; 63:e202406936. [PMID: 38769939 DOI: 10.1002/anie.202406936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/14/2024] [Accepted: 05/20/2024] [Indexed: 05/22/2024]
Abstract
Cope rearrangements have garnered significant attention owing to their ability to undergo structural reorganization in stereoselective manner. While substantial advances have been achieved over decades, these rearrangements remained applicable exclusively to parent 1,5-hexadienes. Herein, we disclose the gold-catalyzed arylative Cope rearrangement of 1,6-heptadienes via a cyclization-induced [3,3]-rearrangement employing ligand-enabled gold redox catalysis. Detailed mechanistic investigations including several control experiments, cross-over experiment, HRMS analysis, 31P NMR and DFT studies have been performed to underpin the mechanism.
Collapse
Affiliation(s)
- Bidisha Paroi
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-, 462 066, India
| | - Chayanika Pegu
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-, 462 066, India
| | - Manoj V Mane
- Centre for Nano and Material Science, Jain (Deemed-to-be University), Jain Global Campus Kanakapura, Bangalore, Karnataka-, 562112, India
| | - Nitin T Patil
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal-, 462 066, India
| |
Collapse
|
3
|
Font P, Valdés H, Ribas X. Consolidation of the Oxidant-Free Au(I)/Au(III) Catalysis Enabled by the Hemilabile Ligand Strategy. Angew Chem Int Ed Engl 2024; 63:e202405824. [PMID: 38687322 DOI: 10.1002/anie.202405824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/02/2024]
Abstract
In this minireview we survey the challenges and strategies in gold redox catalysis. Gold's reluctance to oxidative addition reactions due to its high redox potential limits its applicability. Initial attempts to overcome this problem focused on the use of sacrificial external oxidants in stoichiometric amounts to bring Au(I) compounds to Au(III) reactive species. Recently, innovative approaches focused on employing hemilabile ligands, which are capable of coordinating to Au(I) and stabilizing square-planar Au(III) intermediates, thus facilitating oxidative addition steps and enabling oxidant-free catalysis. Notable examples include the use of the (P^N) bidendate MeDalphos ligand to achieve various cross-coupling reactions via oxidative addition Au(I)/Au(III). Importantly, hemilabile ligand-enabled catalysis allows merging oxidative addition with π-activation, such as oxy- and aminoarylation of alkenols and alkenamines using organohalides, expanding gold's versatility in C-C and C-heteroatom bond formations and unprecedented cyclizations. Moreover, recent advancements in enantioselective catalysis using chiral hemilabile (P^N) ligands are also surveyed. Strikingly, versatile bidentate (C^N) hemilabile ligands as competitors of MeDalphos have appeared recently, by designing scaffolds where phosphine groups are substituted by N-heterocyclic or mesoionic carbenes. Overall, these approaches highlight the evolving landscape of gold redox catalysis and its tremendous potential in a broad scope of transformations.
Collapse
Affiliation(s)
- Pau Font
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, Girona, E-17003, Catalonia, Spain
| | - Hugo Valdés
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, Girona, E-17003, Catalonia, Spain
- Current address: Departamento de Química Orgánica y Química Inorgánica, Universidad de Alcalá, 28805, Alcalá de Henares, Madrid, Spain
| | - Xavi Ribas
- Institut de Química Computacional i Catàlisi (IQCC) and Departament de Química, Universitat de Girona, Campus de Montilivi, Girona, E-17003, Catalonia, Spain
| |
Collapse
|
4
|
Muratov K, Zaripov E, Berezovski MV, Gagosz F. DFT-Enabled Development of Hemilabile (P ∧N) Ligands for Gold(I/III) RedOx Catalysis: Application to the Thiotosylation of Aryl Iodides. J Am Chem Soc 2024; 146:3660-3674. [PMID: 38315643 DOI: 10.1021/jacs.3c08943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Ligand-enabled oxidative addition of Csp2-X bonds to Au(I) centers has recently appeared as a valuable strategy for the development of catalytic RedOx processes. Several cross-coupling reactions that were previously considered difficult to achieve were reported lately, thus expanding the synthetic potential of gold(I) complexes beyond the traditional nucleophilic functionalization of π-systems. MeDalPhos has played an important role in this development and, despite several studies on alternative structures, remains, so far, the only general ligand for such process. We report herein the discovery and DFT-enabled structural optimization of a new family of hemilabile (P∧N) ligands that can promote the oxidative addition of aryl iodides to gold(I). These flexible ligands, which possess a common 2-methylamino heteroaromatic N-donor motif, are structurally and electronically tunable, beyond being easily accessible and affordable. The corresponding Au(I) complexes were shown to outperform the reactivity of (MeDalPhos)Au(I) in a series of alkoxy- and amidoarylations of alkenes. Their synthetic potential and comparatively higher reactivity were further highlighted in the thiotosylation of aryl iodides, a challenging unreported C-S cross-coupling reaction that could not be achieved under classical Pd(0/II) catalysis and that allows for general and divergent access to aryl sulfur derivatives.
Collapse
Affiliation(s)
- Karim Muratov
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Emil Zaripov
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Maxim V Berezovski
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| | - Fabien Gagosz
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa K1N 6N5, Canada
| |
Collapse
|
5
|
Wagner-Carlberg N, Rovis T. Rhodium(III)-Catalyzed Remote Hydroamidation of Internal Alkenes via Chain Walking. ACS Catal 2023; 13:16337-16343. [PMID: 39006066 PMCID: PMC11238874 DOI: 10.1021/acscatal.3c05075] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Hydroamination of terminal alkenes represents a powerful and well-established way to introduce nitrogenous functionality to feedstock chemicals. Remote hydroamination reactions are far less known, and represent a way to functionalize unactivated C(sp3) centers distal to the site of the alkene. These transformations commonly take place via metal hydride-mediated chain walking, and as such, regioselectivity can be challenging. The remote introduction of amides is of particular interest due to their prevalence in pharmaceuticals. Herein we report a Rh(III)-catalyzed hydroamidation procedure to functionalize the terminal position of internal alkenes, using dioxazolones as amidation reagents and i-PrOH as a hydride source. The reaction proceeds with high yield and regioselectivity, and tolerates a variety of functionality. Regioconvergent synthesis of a single linear amide from a mixture of isomeric alkenes is demonstrated. Key to the development of this reaction was determining that inorganic bases poison the catalyst, and identifying a suitable trialkylamine replacement.
Collapse
Affiliation(s)
- Noah Wagner-Carlberg
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Tomislav Rovis
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|