1
|
Wu S, Li M, Lu J, Yang C, Huang Y, Lin A. Enantioselective Synthesis of Hydrindanes via Palladium-Catalyzed Asymmetric Desymmetrization of Cyclohexadiene Derivatives. Org Lett 2025. [PMID: 39907521 DOI: 10.1021/acs.orglett.4c04733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
We herein disclose a strategy for the asymmetric desymmetrization of cyclohexadiene derivatives via a palladium-catalyzed Heck and tandem Heck/Tsuji-Trost allylic alkoxylation reaction. By employing DCE as the solvent, we obtained a variety of chiral hydrindanes containing an all-carbon quaternary carbon center and a tertiary carbon chiral center in good yields with excellent enantioselectivities. With alcohols as the solvent, the valuable chiral hydrindanes with one quaternary stereocenter and two tertiary centers were constructed with a high level of enantioinduction.
Collapse
Affiliation(s)
- Shu Wu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Miaomiao Li
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Jiajun Lu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Chi Yang
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yue Huang
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
2
|
Chen J, Jin Y, Fu J, Jiang C, Ding Z. Synthesis of Dioxo-Azabicyclo[3.2.1]octanes via Hypervalent Iodine-Mediated Domino Reaction. J Org Chem 2024; 89:15884-15892. [PMID: 39412824 DOI: 10.1021/acs.joc.4c02023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Bicyclo[3.2.1]octane (BCO) skeleton widely exists in natural products and biologically active molecules, whereas the development of convenient approaches to construct this structure remains a challenge. Herein, we describe a cascade reaction to synthesize 6,8-dioxa-3-azabicycle[3.2.1]octane derivatives from β-keto allylamines via an oxidation-cyclization reaction. A series of dioxo-azabicyclo[3.2.1]octanes bearing a quaternary carbon center were obtained in good yields under mild reaction conditions. Moreover, the mechanistic rationale for this novel domino reaction is supported by control experiments.
Collapse
Affiliation(s)
- Jingjing Chen
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yu Jin
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jialing Fu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Cheng Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenhua Ding
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
3
|
Liu P, Dong H, Gong B, Gao S, Lin A, Yao H. Palladium-Catalyzed Asymmetric Tandem Carbonylation-Heck Reaction of Cyclopentenes to Access Chiral Bicyclo[3.2.1]octenes. Org Lett 2024; 26:8244-8248. [PMID: 39311415 DOI: 10.1021/acs.orglett.4c02719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
A palladium-catalyzed asymmetric tandem carbonylation-Heck reaction of cyclopentenes with carbon monoxide (CO) has been disclosed. This desymmetrization procedure afforded a series of bicyclo[3.2.1]octenes with one chiral quaternary and one tertiary carbon center in good yields with good enantioselectivities. This reaction proceeds via an acyl-palladium intermediate, followed by migratory insertion of the alkenes.
Collapse
Affiliation(s)
- Pengyun Liu
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hongyue Dong
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Baihui Gong
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Shang Gao
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Bioactive Natural Product Research, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
4
|
Zhou H, Xue Y, Zhou X, Yao H, Lin A. Palladium-Catalyzed Asymmetric Desymmetrization for the Simultaneous Construction of Chiral Phosphorus and Quaternary Carbon Stereocenters. Org Lett 2024; 26:5934-5939. [PMID: 38967969 DOI: 10.1021/acs.orglett.4c01863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
A palladium-catalyzed asymmetric tandem Heck and carbonylation of bisallyl-phosphine oxides has been developed. This desymmetrization process provided an efficient route to the simultaneous synthesis of a chiral P-stereogenic center and a chiral quaternary carbon stereocenter in good yields with good diastereo- and enantioselectivities.
Collapse
Affiliation(s)
- Hengrui Zhou
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Yiji Xue
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Xiang Zhou
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Hequan Yao
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R. China
| |
Collapse
|
5
|
Liang RX, Ding C, Cai HJ, Wang JY, Li QC, Yu GY, Jia YX. Pd-Catalyzed Enantioselective Desymmetrizing 1,7-Enyne Cycloisomerization of Alkyne-Tethered Cyclopentenes. Org Lett 2024; 26:4400-4405. [PMID: 38735050 DOI: 10.1021/acs.orglett.4c01507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
An enantioselective Pd-catalyzed intramolecular desymmetrizing cycloisomerization of N-(cyclopent-3-en-1-yl)propiolamides has been developed by employing a new chiral phosphoramidite ligand. A series of structurally unique bridged azabicycles are achieved in moderate to excellent yields with good E/Z selectivity and high enantioselectivity. Synthetic transformations are conducted to demonstrate the practical utility of this reaction.
Collapse
Affiliation(s)
- Ren-Xiao Liang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Chao Ding
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Hu-Jie Cai
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Jia-Yi Wang
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Qi-Chuang Li
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Gao-Yang Yu
- College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Chaowang Road 18#, Hangzhou 310014, China
| | - Yi-Xia Jia
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
6
|
Guin AK, Chakraborty S, Khanra S, Chakraborty S, Paul ND. Oxygen-Dependent Ligand-Controlled Iron-Catalyzed Chemoselective Synthesis of Olefins and Vinyl Nitriles. Org Lett 2024; 26:2540-2545. [PMID: 38546405 DOI: 10.1021/acs.orglett.4c00455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
An oxygen-dependent ligand-controlled chemoselective synthesis of vinyl nitriles and E-olefins by coupling a variety of alcohols and benzyl cyanides, catalyzed by a well-characterized, air-stable, easy-to-prepare Fe(II) catalyst (1a) bearing a redox-active arylazo pincer (L1a) is reported. The azo-moiety of the ligand backbone acts as an electron and hydrogen reservoir, enabling catalyst 1a to efficiently produce a broad spectrum of vinyl nitriles and E-olefins in moderate to good yields selectively under an oxygen and argon atmosphere, respectively.
Collapse
Affiliation(s)
- Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhajit Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Subhankar Khanra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Santana Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India
| |
Collapse
|